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The palladium nanoparticles were immobilized on DNA-modified multi walled 
carbon nanotubes as stable and powerful heterogeneous catalyst. The catalyst 
was characterized by FT-IR spectroscopy, UV-Vis spectroscopy, field emission 
scanning electron microscopy, X-ray diffraction, transmission electron 
microscopy, inductively coupled plasma and elemental analysis. DNA as a well-
defined structure and biodegradable natural polymer was used to make the 
palladium catalyst which shows a high activity in Suzuki and Sonogashira cross-
coupling reactions in excellent yields and good selectivity under ligand-free 
and mild reaction conditions. Moreover, the catalyst could be recovered and 
reused several times without any considerable loss of its catalytic activity. This 
air- and moisture-stable phosphine-free palladium catalyst was found to be 
highly active in aqueous ethanol with extremely small amount of palladium 
under mild conditions. To the best of our knowledge, this is the first report 
on using DNA base heterogonous catalyst for Suzuki and Sonogashira cross-
coupling reactions.
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INTRODUCTION
The palladium-catalyzed cross-coupling 

reactions are efficient methods for carbon–carbon 
bond formation [1-7]. The biaryl derivatives 
generated in Suzuki cross-coupling reactions 
have been widely used in many natural products, 
pharmaceuticals and advanced materials; so, a large 
number of effective catalytic systems have been 
developed [8-11]. The standard Suzuki reaction 
using palladium salts and phosphine ligands suffers 
from limitations that have so far precluded many 
industrial applications. In spite of wide applications 
of Pd-catalysts in coupling reaction, the catalyst 
recovery and contamination of products by toxic 
palladium is a main problem; the acceptable limits 
of palladium pollution in pharmaceuticals were set 
as ppm level [12, 13]. Moreover, phosphine ligands 
are toxic and sensitive to air and moisture [14, 15]; 

so, heterogeneous phosphine-free catalysts are 
highly valuable. 

In this regard, development of effective 
and practical catalytic approaches using an 
environmental friendly, low cost and safe ligands 
has been a topic of great interest during recent 
years [16-21]. Biomolecules such as DNA are highly 
favorable; their applications in various biomaterials 
and biocatalysts [22-27], their chemical stability, 
biodegradability, commercial availability, and also 
their low-cost make them attractive materials in 
catalyst field. Stabilization of metal nanoparticles 
such as Ag,[28] Au,[29] Co,[30, 31] Cu,[32] Pt[33] 
and Pd[34, 35] in  DNA cavities by coordination 
and a large number of effective catalytic systems 
have been developed. [36, 37] However, solubility of 
DNA promoted us to fix it on a nano solid support 
to generate a recyclable heterogeneous catalyst.

Furthermore, use of robust reusable catalyst 
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for cross-coupling reaction prepared from various 
solid supports such as microporous polymers, 
activated carbon, clays, magnetic nanoparticles 
and carbon nanotubes (CNTs) [9, 38-40] could be a 
suitable method for overcoming the disadvantages 
of palladium salts pollution. In recent years, carbon 
nanotubes (CNTs) due to their unique thermal, 
mechanical and chemical properties have attracted 
significant interests. They have unique features such 
as large surface, intrinsic low mass and easy surface 
modifications which might be favourable candidates 
as catalysts or supports [41-42]. Considering 
the fascinating structure of CNTs, such as large 
capability of loading organic molecules, they can 
be used as an efficient support for immobilization 
of DNA and palladium nanoparticles making 
a unique efficient and recoverable catalyst. The 
aromatic nucleobases of DNA interact through 
π–π stacking with carbon surface [43, 44] and 
stabilize palladium nanoparticles. Several reports 
in production and structure investigation of DNA-
modified carbon materials and their uses in drug 
delivery, biosensors and high-performance modern 
materials are available [45].

These observations motivated us to explore 
the potential of this catalyst for such cross-
coupling reactions. Now, in continuation of 
our recent investigations on the application of 
heterogeneous catalytic systems in cross-coupling 
reactions [8, 46-48], we would like to report the 
application of Pd/DNA@MWCNTs in the Suzuki 
and Sonogashira coupling reactions (Scheme 1). 
Its catalytic applications are rare and, to the best of 
our knowledge, Suzuki and Sonogashira employing 
immobilized palladium on DNA-modified CNTs 
have not been reported previously. 

One of the most valid metal catalyzed carbon–
carbon cross-coupling reactions of aryl halides 
with a terminal acetylene is the Sonogashira 

reactionwhich is widely used in pharmaceuticals 
and advanced materials [49-56]. The original 
catalytic system for Sonogashira couplings include 
the use of a palladium catalyst and a co-catalyst of 
copper(I) salt. Many different synthetic methods 
based on copper-free palladium catalysts have 
been reported for this reaction [57]. However, 
from sustainability point of view, because of the 
high cost and toxicity of palladium, using effective 
heterogonous palladium catalytic systems is much 
more interesting.

RESULTS AND DISCUSSION
The preparation of Pd/DNA@MWCNTs 

(Scheme 2) catalyst was performed as explained in 
experiment section.

Single-stranded salmon testes of DNA (ss-
DNA) was loaded on MWCNTs via non-covalent 
and simple way by mixing them in an aqueous 
solution, DNA/MWCNTs was formed and then 
reacted with palladium to obtain Pd/DNA@
MWCNTs. The produced catalyst was characterized 
by several instrumental methods; the results are 
given in supplemental data. The FT-IR spectrum 

 

Scheme 1. Reactions catalyzed by Pd/DNA@MWCNTs. 
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Scheme 2. Structure of Pd/DNA@MWCNTs 
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of the final catalyst was depicted presentation of 
aromatic nucleobases and phosphate group of 
DNA (Fig. S1). It can also be monitored by UV−Vis 
spectroscopy (Fig. S2). The structural properties of 
the synthesized catalyst was analyzed by XRD (Fig. 
S3). The palladium content of Pd/DNA@MWCNTs 
was found to be 0.12 mmolg-1 of the catalyst as 
measured by ICP-OES analysis. The morphology of 
the catalyst surface was studied by field emission 
scanning electron microscopy (FE-SEM) (Fig. 

1). A transmission electron microscopy (TEM) 
image of catalyst revealed nanometer dimensions 
of the catalyst (Fig. S4). In the outset, for screening 
experiments, the model reaction was performed 
using bromobenzene and phenylboronic acid as 
substrates (Table 1). 

It was first carried out without any catalyst, and 
no product was formed (Table 1, entry 1). In the 
presence of Pd@MWCNTs (with 5 mol% Pd), as 
ligand-free systems, appeared to be less active, and 
produced only trace amounts of product after 4 h 
(Table 1, entries 2). However, surprisingly, 0.002 g 
of Pd/DNA@MWCNTs containing 0.024 mol% of 
Pd showed the highest activity, and afforded the 
product in 96% yield. The critical effect of ligand 
on reaction performance was indicated. The effect 
of bases on the model reaction was investigated. As 
shown in Table 1, NaHCO3, K2CO3, K3PO4, Na2CO3 
and NaOH were tested and NaOH was found as the 
most effective agent (Table 1, entries 3-7).

Further investigations revealed that the reaction 
is also affected by the other parameters including the 
amount of catalyst, substrate and base ratio, solvent 
and temperature which upon them the optimal 
reaction conditions should be EtOH: H2O in 1:1 
ratio, bromobenzene : phenylbroronic acid in 1:1.2, 

 

Scheme 2. Structure of Pd/DNA@MWCNTs 
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Fig. 1. FE-SEM images of (a) MWCNTs and (b) Pd/DNA@MWCNTs 

 

Fig. 1. FE-SEM images of (a) MWCNTs and (b) Pd/DNA@MWCNTs
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at 65 °C, and 60 min (Table 1, entries 8-18). Under 
the optimized conditions, the scope of the reaction 
regarding to the kind of aryl halides was probed. 
The results are summarized in Table 2. Various 
substituents of aryl iodides, aryl bromides and aryl 
chlorides are transformed into the corresponding 

products in high to excellent yields. However, no 
significant different was observed among aryl 
iodides and aryl bromides substrate. The results 
show that aryl halides with electron-withdrawing 
substituents in comparison to electron-donating 
groups give more yields. Under the optimized 

 
 
Table 1. Optimization of Suzuki Reaction Conditionsa 

 

 
 

Entry Cat. (mg/mol%)  Base (eq) Solvent T (℃  Yieldb (%) 
1c - K2CO3 (3) DMF 100 - 
2c 0.02 (5) of (Pd @MWCNTs) K2CO3 (3) DMF  100 30 
3 0.002 (0.024) K2CO3 (3) DMF 100 96 
4 0.002 (0.024) NaHCO3 (3) DMF 100 67 
5 0.002 (0.024) K3PO4 (3) DMF 100 93 
6 0.002 (0.024) Na2CO3 (3) DMF 100 74 
7 0.002 (0.024) NaOH (3) DMF 100 97 
8 0.002 (0.024) NaOH (3) H2O 100 90 
9 0.002 (0.024) NaOH (3) PEG(200) 100 95 
10 0.002 (0.024) NaOH (3) EtOH 80 91 
11 0.002 (0.024) NaOH (3) H2O:EtOHd 80 98 
12 0.002 (0.024) NaOH (3) H2O:EtOH 65 97 
13 0.002 (0.024) NaOH (3) H2O:EtOH r.t. 42 
14 0.001 (0.012) NaOH (3) H2O:EtOH 65 72 
15 0.005 (0.06)) NaOH (3) H2O:EtOH 65 98 
16 0.002 (0.024) NaOH (1) H2O:EtOH 65 88 
17 0.002 (0.024) NaOH (2) H2O:EtOH 65 94 
18 0.002 (0.024) NaOH (4) H2O:EtOH 65 96 
aReaction conditions: 1 mmol 4-bromobenzen, 1.2 mmol phenylboronic acid in 3 mL of solvent for 1 h. bGC and isolated yield. C24 h, 
d 1:1 ratio 

Table 1. Optimization of Suzuki Reaction Conditionsa

Table 1. Optimization of Suzuki Reaction Conditionsa 

 
Table 2. Suzuki cross-coupling of various aryl halides in the presence of the catalyst.a 

 
  

 

 
 

Entry X R Yeildb(%) 
1 I H 98 
2 I 4-NH2 79 
3 I 3-NO2 94 
4 Br H 96 
5 Br 2-NH2 73 
6 Br 4-NH2 81 
7 Br 4-CN 96 
8 Br 4-CHO 98 
9 Br 3-CHO-4-OH 73 
10 Cl H 86 
11 Cl 4-NH2 68 
12 Cl 4-COH 87 
aThe reaction was carried out with aryl halide (1.0 mmol), phenylboronic acid (1.2 mmol), NaOH 
(3.0 equiv.) in 3.0 mL H2O:EtOH (1:1), 0.002 mg of catalyst (0.024 mol% of Pd) at 65 °C for 1h. 
bIsolated yield. 

Table 2. Suzuki cross-coupling of various aryl halides in the presence of the catalyst.a
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reaction conditions assigned; application of this 
catalyst was also studied in the Sonogashira 
reaction. Aryl halides with various living groups 
and substituents converted to their corresponding 
products in high to excellent yields (Table 3). All 
of the products are known and characterized by 
comparing their physical data with those reported 
in the literature.

Generally, the catalyst was compatible with 
a wide range of functional groups and exhibited 
good activity in cross-coupling reactions for the 
construction of C–C bonds to synthesize derivatives 
of biphenyl and diphenylethyne using low amounts 
of palladium and green solvent (ethanol and water) 
under mild reaction conditions.

Moreover, combination of advantages of 
heterogeneous catalysts, such as a reasonable 
catalytic activity, stability and reusability, make this 
catalyst sufficient for cross-coupling reactions on 
efficiency, environmental and economic grounds. 
The template reaction of Suzuki was selected for 
studying the leaching of catalyst. After 30 minutes, 
the catalyst was separated and the remaining 
solution was stirred for 1 h, without catalyst, and 
no increase in conversion was detected. Moreover, 
ICP analysis of the remaining solution indicates 
no Pd in the reaction mixture. These results clearly 
confirm that this catalyst is heterogeneous in nature 
and Pd is not leached out from the solid surface of 
the catalyst during the coupling reaction. 

Catalyst reusing is important from economic, 
environmental and industrial points of view. So, 

the recyclability of catalyst was checked in model 
reaction of Suzuki. At the end of reaction, the 
catalyst was separated, washed with ethanol and 
acetone and reused. As reported in Table 4, the 
catalyst was reused seven times with no significant 
loss of activity. Great recyclability of CNTs 
supported heterogonous catalyst was also reported 
previously [58]. All these results demonstrate 
that the Pd/DNA@MWCNTs give high catalytic 
activity in cross-coupling reactions with more 
environmental and economic benefits compared to 
the wide range of homogenous catalysts reported 
previously.

CONCLUSION
This work provides a green and economical 

method for efficient Suzuki and Sonogashira under 
mild and aerobic conditions by DNA-modified 
MWCNTs-based Pd hybrid catalyst. In addition, 
our catalytic system has significantly low amount 
of palladium loading and could be reused for seven 
consecutive cycles without any marked loss of its 
activity.

 
Table 3. Sonogashira cross-coupling of various aryl halides in the presence of the catalyst.a 

 
  

 

 
 

Entry X R Yeildb(%) 
1 I H 98 
2 I 4-NH2 89 
3 Br H 97 
5 Br 2-NH2 76 
6 Br 4-CHO 95 
7 Br 3-CHO-4-OH 90 
6 Cl H 81 
7 Cl 4-NH2 64 
8 Cl 4-COH 88 
9 Cl 4-NO2 86 
aThe reaction was carried out with aryl halide (1.0 mmol), phenylacetylene (1.2 mmol), NaOH (3.0 equiv.) in 3.0 mL 
H2O:EtOH (1:1), 0.002 mg of catalyst (0.024 mol% of Pd) at 65 °C for 1h. bIsolated yield. 

Table 3. Sonogashira cross-coupling of various aryl halides in the presence of the catalyst.a

Table 4. Reusability of the catalyst in the Suzuki reaction of 4-bromobenzen with phenylboronic acid 

Run Yielda (%) Run Yielda (%) 
1 98 5 89 
2 95 6 90 
3 92 7 86 
4 90   
aIsolated yield 

Table 4. Reusability of the catalyst in the Suzuki reaction of 
4-bromobenzen with phenylboronic acid
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EXPERIMENT
General procedure for catalyst preparation

The catalyst (Pd/DNA@MWCNTs) was 
synthesized through the method which is described: 
0.3 g of the as-received MWCNTs was dispersed 
in 25 mL of piranha (mixture of sulphuric acid 96 
wt% and hydrogen peroxide 30 wt% in ratio 70:30) 
in a 100 mL round bottom flask equipped with a 
condenser, and dispersion was kept for 5 h.

Next, the dispersion was diluted in water and 
filtered. Then, the resulting solid was washed up to 
neutral pH and dried in vacuum at 40°C overnight. 
The DNA-functionalized MWCNTs were 
synthesized using Qu’s strategy [37]. The ss-DNA 
was heated at 95°C for 1 h to obtain the single-
stranded DNA. The CO2H-MWCNTs dispersion 
was mixed with single-stranded DNA (10 ml, 2 mg 
mL−1), NaBH4 was added (8 μL, 75 wt %; NaBH4/ 
MWCNTs-O) and the mixture refluxed at 100°C 
for 1 h. Then, the solution was centrifuged and 
washed several times with water and dried.

General procedure for Suzuki reaction 
In a round-bottomed flask equipped with 

a mechanical stirring, aryl halide (1.0 mmol), 
phenylboronic acid (1.2 mmol), NaOH (4.0 equiv.) 
and 0.002 mg of catalyst (0.024 mol % of Pd) in 
3.0 mL H2O : EtOH were stirred for 1 h under 
air atmosphere at 65. The progress of the reaction 
was monitored by TLC and GC. After completion 
of the reaction, the mixture was diluted with 
dichloromethane and water. The organic layer 
was washed, dried, concentrated and isolated 
by chromatography to afford the corresponding 
products. The products were characterized by 
comparing their properties, such as m.p, IR, 1H, and 
13C NMR spectra with those reported in literature.

General procedure for Sonogashira reaction
In a round-bottom flask equipped with a 

mechanical stirrer, phenyl acetylene (1.2 mmol), 
aryl halide (1.0 mmol), catalyst (0.002 mg, 0.024 
mol%), and NaOH (4.0 eq.) in H2O:EtOH (3 mL) 
were stirred under an air atmosphere at 65. The 
progress of the reaction was monitored by TLC 
and GC. After the end of the reaction, the mixture 
was diluted with dichloromethane and water. 
The organic layer was washed with brine and 
concentrated under reduced pressure. The product 
was isolated by column chromatography to give 
the corresponding products. The products were 
characterized by comparing their properties, such 

as m.p, IR, 1H, and 13C NMR spectra with those 
reported in the literature.
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