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Some pulsed tissues are replaced with non-pulsed damaged tissues that may 
endanger the heart function after a heart attack. The restoration is performed 
by a patch tissue to repair defective tissues. It is supposed to attach to the 
outside of the heart and connect to the wounded area. The patch is made of 
a conductive polymer on which a separate electrical polymer called “alginate” 
through a process called 3D bioprinter was fabricated. The mechanism of 
the prepared patch for biological and cell behavior needs to be investigated. 
Besides, we explain the results of the combination of these polymers with 
natural and synthetic polymer composites. As a natural and biological soft patch 
for cardiovascular disease (CVD), the adhesion of cells to patch is more efficient 
and important. In this study, we used a novel technique to print sodium alginate 
for CVD problems with a soft hydrogel patch loaded by a restorative drug. The 
mechanical and biological properties and severity of degradability of the patch 
can be controlled using a specific polymer. In other words, by producing soft 
tissue patches, researchers and clinical surgeons can obtain more desirable 
properties made of natural and synthetic polymer composites for the treatment 
of heart disease. In this study, four CVD patches are fabricated using 3D bioprinter 
X4bioFab with various amounts of drug on their surfaces containing 2%, 4%, 6%, 
and 8%. The obtained values for mechanical and biological performance present 
proper features for the sample containing 6% drug. The results indicated that 
the prepared patch can be a suitable candidate for heart disease with sufficient 
cell attachment after a while.
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INTRODUCTION
The heart is one of the most important muscular 

organs of the human body and is considered as 
one of the strongest ones that delivers oxygen 

and nutrients to other parts of the body [1-5]. 
The heartbeats begin during development in the 
uterus before birth [2-6]. During our lifetime, the 
heart may suffer from diseases caused by many 
modifiable risk factors, such as unhealthy diet, 
smoking, overweight and obesity, inactivity, high 
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blood pressure, diabetes, and unfavorably old age 
[6]. Loss of myocardial tissue may cause irregular 
heartbeats, heart failure, myocardial disruption, 
and even sudden death [7-8]. These problems 
have been treated with coronary bypass surgery, 
balloon angioplasty and inserting stents, and heart 
transplants; however, nanotechnology and soft-
tissue engineering can easily solve complicated 
problems using high-technology [9-15]. There 
are some challenges in cardiac tissue engineering 
including cell adhesion and alignment, electrical 
impulses, supplying arteries, the thickness of 
cardiac structures, regular cardiac cycles, and tissue 
integration [16-21]. Various types of scaffold-based 
three-dimensional structures have been studied 
by researchers. They inserted/injected iPSC-CM 
or cardiac sample cells into the prefabricated 
three-dimensional scaffolds [21-28]. As shown 
previously, the hiPSCs are derived from cardiac 
fibroblasts which are better than skin fibroblasts, 
due to their effectiveness in treating myocardial 
damages. Moreover, cardiac fibroblasts have more 
access to Ca2+ ions, which is a crucial cation for 
myocardial contraction [29-35]. Recently, genetic 
engineers, biologists, and soft-tissue engineers 
have developed a type of polymer patch that can 
pick up electrical signals from surrounding cells 
and transmit those signals between wounded 
slits, contract, and expand with the heart which 
all are crucial for cardiac muscle functions [36-
41]. Patches are automatically glued after printing 
and can be used for cardiac disease. Experimental 
studies on the arteries of mice revealed that these 
patches can work efficiently after being implanted/
transplanted in the myocardium [42-57].  This 
study aimed to investigate and create an artificial 
patch for the damaged myocardial tissues made 
with the 3-D bioprinter that can be attached to the 
outer layer of the cardiac tissue. We aimed to create 
a patch that can detect atherosclerotic plaques, is 
able to deliver therapeutic biomolecules to the 
site of blocked arteries, and eliminate or decrease 
coronary atherosclerotic plaques.

MATERIALS AND METHODS
The 3D printed path was fabricated by OMID-

AFARINAN company with a highly printable 
hydrogel and created a suitable environment 
similar to the extracellular matrix for cell growth 
and differentiation [2, 23]. To print this sample, the 
BIOFABX2 3D printer was used with two printing 
modules that allow the printing of a variety of 

biological and cellular materials simultaneously. 
To monitor the morphology of the patch, the 
scanning electron microscopy (SEM) was used. The 
alginate polymer (bioink) was prepared according 
to the protocol explained by OMID-AFARINAN 
company. Fig. 1 shows schematically how the 
designed bioprinted patch is implemented to the 
outer layer of the heart. Fig. 2 shows the preparation 
process of the patch for treating the cardiac scars 
after cardiovascular disease (CVD). The following 
patch could be evaluated by its biological and 
mechanical properties in a biological environment 
such as phosphate saline for several days. The drug 
was purchased from the Merck Company and 
dissolved in the distilled water and stirred for 4 h 
using a magnetic stirrer. The tensile strength and 
elastic modulus were measured using the electronic 
mechanical machine. The cell growth and cell 
viability of the bioprinted patch were investigated 
after three days of incubation.

RESULTS AND DISCUSSION
The special patch had 4 various drug content. 

According to the observed tensile strength and 
biological features, the patch had satisfactory 
mechanical and biological properties, indicating 
that  that we may use similar products for cardiac 
applications. During the use of these cells, the 
number of capillaries in the part of the heart 
modeled as a cardiac arrest was increased. Fig. 3 
shows the tensile strength of the fabricated patch 
made by the bio3Dprinter BIOFABX2 model. It 
can be seen that the coated drug on the surface of 
the patch increased the tensile stress until the third 
sample. As the amount of drug increases by more 
than 6%, the tensile strength decreases regarding 
the amount of drug and stress-strain diagram. 
Fig. 3 also shows a line chart as an independent 
variable of the mass of sample. The graph shows 
the tensile strength value in the range of 34 KPa to 
32 KPa acts as a hyperviscoelastic properties. Fig. 
4 shows a decreasing trend of the samples’ weight 
after soaking for three days in PBS. The graphs 
show that as the sample coating amount increases, 
the weight loss decreases, that is corresponding to 
the functional group of coated drugs [11-27].  Fig. 
5 (a-b) illustrates the morphology of the printed 
patch with SEM. The porous sizes ranged from 
200 to 300 microns. The shape of the porosity is 
cubic that enables cardiac stem cells to enter the 
holes and regenerate the defective tissue. Fig. 6 
indicates the MTT assay of the sample incubated 



122

K. Salimi et al. / An Artificial Soft Tissue Made of Nano-Alginate Polymer 

Nanochem Res 5(2): 120-127, Summer and Autumn 2020

1 
 

 

 

Figure 1. BioXfab 3D bioprinter machine, fabricated 3D patch, SEM images of the 
fabricated patch, and application of the prepared patch for the cardiac application using 
alginate hydrogels and hyaluronic acid  

Fig. 1. BioXfab 3D bioprinter machine, fabricated 3D patch, SEM images of the fabricated patch, and application of the prepared patch 
for the cardiac application using alginate hydrogels and hyaluronic acid
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Figure 2. Schematic of the preparation of polymeric filler for CVD application using the 
bioprinter 

Fig. 2. Schematic of the preparation of polymeric filler for CVD application using the bioprinter
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Figure 4. Amount of degradation and weight loss of the four samples in the phosphate buffer 
saline after three days of soaking 
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Figure 5. SEM images of (a) bioprinted patch with cubic shape, and (b) magnified patch with 

cubic shape 

Fig. 3. Tensile strength of polymeric patch for CVD application using the bioprinter
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Figure 3. Tensile strength of polymeric patch for CVD application using the bioprinter 

Fig. 4. Amount of degradation and weight loss of the four samples in the phosphate buffer saline after three days of soaking

Fig. 5. SEM images of (a) bioprinted patch with cubic shape, and (b) magnified patch with cubic shape
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for three days in the cell culture medium. The 
obtained results indicated that the sample with 6% 
coated drug have a proper and sufficient chemical 
and biological response compared to the other 
specimens. The heart patch is an important agenda 
in cardiovascular failure regarding the myocardial 
infarction that several researchers have worked on 
that [28-38]. The mechanical calculations show the 
micromechanical properties of the patches with 
and without cells. The mechanical and biological 
values are presented in Table 1. Based on the 
results, the effective elastic modulus is increased 
and the overall mechanical properties are relatively 
improved. This increase in mechanical properties 
may cause cardiac tissue dysfunction and also may 
lead to patient death [39-42]. In this study, a patch 
for soft-tissue implementation was fabricated using 

BioFabX4. Alginate polymer was used as a water-
soluble material with potential modification on its 
crosslinking procedure. The samples were coated 
with 2%, 4%, 6%, and 8% of the drug to determine 
the effect of the drug on sample degradation and 
mechanical performance. The drug and other 
elements were used to enhance the mechanical 
properties and biodegradability of the final 
products. Recently, the 3D printer has been used to 
enhance the treatment of soft tissue using the new 
generation of biomimetic materials to complete the 
regeneration approaches [27, 43-49]. The physical 
and mechanical properties of the printed patches 
need to be investigated. Cardiac stem cells are also 
extracted from heart tissue as multipotent stem 
cells. Due to their cardiac origin, the possibility 
of mechanical and electrical compatibility with 
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Figure 6. MTT assay result of the strength of polymeric patch for CVD application using 
bioprinter 
 

 

Fig. 6. MTT assay result of the strength of polymeric patch for CVD application using bioprinter

Table 1: Tensile strength, degradation rate, and MTT assay of the bioprinted patch for CVD disease.
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surrounding cells is high. These cells can produce 
myocytes, endothelial cells, and smooth muscle 
in the extracorporeal environment. The low 
production efficiency and sensitive sampling 
method are among the limitations in using these 
typical cells. 

CONCLUSION 
The mechanical performance of the designed 

patch was improved in a sample containing 6 wt% 
drug, while the sample with 8 wt% drug may have 
a downward trend compared to the pure sample. 
The degradation of the patch decreases with the 
addition of the drug to the bioink after soaking 
for three days in the PBS solution. Regarding the 
morphological behavior of the bioprinted patch, 
it has a cubic shape with 300-micron pores and 
a homogenized shape. The main advantages of 
using these biopolymers bioink are that their 
porosity, density, structure, and composition can 
be controlled and they can be designed for cells and 
various cardiac applications.
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