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Template-free CuO nanorods were synthesized through a three-step 
chemical method with no water-insoluble materials. The first step 
included the preparation of a Cu-complex using dipicolinic acid, L-lysine, 
and copper nitrate. Then, as the second step, the obtained solution was 
allowed to be relaxed for a week  to form some blue single-crystals, which 
would be assigned as a square-pyramidal copper complex according 
to  analyzing its single-crystal structure. Finally, as the third step, the 
blue prepared Cu-complex should be calcined to synthesize the CuO 
phase. Simultaneous thermal analysis (STA) was utilized to determine 
the optimum calcination temperature. Its results showed that 600 ºC 
is the optimum temperature. X-ray diffraction (XRD) analysis approved 
the formation of the CuO phase without any impurity which is matched 
with the monoclinic CuO standard lines (PDF No.: 74-1021). Especially, 
the as-prepared CuO powder has shown clear nanorod morphology in 
transmission electron microscopy (TEM) images and exhibits a notable 
optical behavior and high bandgap energy (Eg = 2.8 eV) in comparison to 
that of bulk CuO (Eg = 1.9-2 eV). 
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INTRODUCTION
As a semiconductor, copper oxide (CuO) 

has been applied in the electronic devices (1), 
electromagnetic-wave filter (2), sensors (3), 
catalysts (4), and hydrogen storage systems (5). 
Different synthesis methods have been developed 
to produce CuO with specific characteristics or 
forms; such as chemical method (6, 7), pulsed laser 
ablation technique (8),  chemical vapor deposition 
(9), etc. Aside from the particle size which is 
considered by different research teams to manage 
the characteristics of the synthesized CuO powder, 
morphology controlling is another parameter 
having considerable effects on the properties of the 
synthesized compounds (10). Nanorod structure 
is one of the popular morphologies of CuO which 

leads to some specific properties and applications; 
such as antibacterial (11), selective gas sensing 
(12), luminescence (13), and material storage (14) 
applications. To achieve such a structure, a template 
and/or a surfactant are needed (15-17) which either 
remains in the system as an impurity or release 
toxic by-products. Although several methods 
have been suggested to synthesize rod-like shape 
particles (18-20), our research team has developed 
a new method to synthesize the ZnO nanoparticles 
with specific morphology. This method is designed 
based on preparing a metal complex. In such a 
situation, metal ions locate in specific sites (21, 22). 
Thermal decomposition of these compounds not 
only leads to form a high purity ceramic material 
but also provides a condition for the preferential 
particle growth. This method could be considered 
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in the case of other nanoparticles.
In this research, an innovative method has been 

evaluated to synthesize CuO nanorods without 
using a template. To do so, three different steps 
have been taken: (i) preparation of a square-
pyramidal copper complex, (ii) aging the solution 
to appear the blue single-crystals , and (iii) heat-
treatment of the as-crystallized compound to burn 
out the organic compounds and form CuO phase. 
Studying the single-crystal structure of the as-
prepared Cu-complex would help to explain the 
formation mechanism of rod-like particles. On the 
other hand, STA, XRD, TEM, and DRS have been 
selected to evaluate the as-synthesized powder 
compound.

EXPERIMENTAL SECTION
Preparation method of CuO nanorods 

The first step was the synthesis of square-
pyramidal copper (II) complex or (Cu(pydc)
(H2O))n. For doing so, dipicolinic acid (pyridine-
2,6-dicarboxylic acid, C7H5NO4, DPA) as a 
complex agent, L-lysine (C6H14N2O2) as an 
α-amino acid (AAA), and copper nitrate trihydrate 
(Cu(NO3)2.3H2O) as a Cu source were purchased 
from Merck. In a typical procedure, a water-based 
solution of DPA and AAA with an equal molar 
ratio was prepared. After 10 min of agitation, an 
adequate amount of copper nitrate was added and 
stirred for 10 min. The molar ratio of DPA/AAA/
copper nitrate was 1/1/0.5.  The obtained solution 
was allowed to relax for a week to appear some blue 
crystals which would be the target complex. Heat 
treatment of the as-synthesized powder may lead 
to form CuO crystalline phase.

Characterization
The single-crystal structure was determined 

by a Bruker SMART 1000 CCD diffractometer 
with Mo Kα and summarized in Table 1. Heat 
treatment of the as-synthesized powder may lead 
to form CuO crystalline phase. The calcination 
temperature would be gained via the simultaneous 
thermal analysis (STA) that was accomplished by 
a Perkin Elmer STA Pyris Diamond device in an 
air atmosphere with a heating rate of 5°C/min. The 
X-ray diffraction (XRD) profile was achieved by a 
PANalytical diffractometer. Transmission electron 
microscopy (TEM) micrographs were gained 
by a Zeiss 900 microscope. Diffuse reflectance 
spectroscopy (DRS) was utilized by a Jascos UV-Vis. 
scanning spectrophotometer (V-670). Based on the 

absorbance results and the Tauc technique, optical 
band gap energy (Eg) values were determined.

RESULTS AND DISCUSSION
The first aim of this work was to synthesize a 

Cu-complex. AAA plays an important role in this 
process due to its excess amine functional group. 
This leads to form hydrogen bonds  and adjust 
the pH value in the basic region facilitating the 
deprotonation of dipicolinic acid and formation 
of an anionic ligand. Table 1 represents the crystal 
data and structure for the blue crystals obtained and 
approves the formation of the (Cu(pydc)(H2O))
n complex. As can be seen, Cu ions are located in 
pseudo-octahedral sites and consequently they 
are hexacoordinated with two oxygen atoms, O(1) 
and O(3), and one nitrogen atom, N(1), which are 
originated from the dipicolinate ions, one oxygen 
atom, O(3A), from the adjacent ligands, and two 
oxygen atoms, O(5) and O(6), from the coordinated 
water molecules. Due to the hydrogen bonds 
between oxygen atoms from the coordinated water 
molecules and non-coordinated water molecules, 
the chain-like complex structure would be created.

STA was used to determine the thermal 

˟ ˟

Table 1 Crystal data, structure, and selected bond lengths for the 
obtained blue crystals
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behavior of the synthesized complex and its critical 
temperatures. Fig. 1 shows differential thermal 
analysis (DTA) and thermal gravimetric analysis 
(TGA) in the temperature range of 25-700 °C. 
Although the weight loss was about 30% at ~ 300 
°C, three different DTA peaks observed at 210, 300, 
and 600 °C, respectively. The first peak at 210 °C, 
which is an endothermic process,  is attributed to 
the removal of coordinated water. The obtained 
dehydrated compound remains stable up to ~ 300 

°C and then a huge exothermic reaction occurred, 
which was accompanied by a weight loss of 30%. 
This might be due to the decomposition and/
or combustion of organic compounds. Although 
the TGA profile shows a steady-state, DTA shows 
a reaction at the temperature range of 400-700 
°C, peaked at 600 °C, that might be due to the 
crystallization of a ceramic oxide compound. 
Accordingly, this temperature was selected for 
the sample preparation procedure. Fig. 2 shows 

Fig. 1. STA curves of the Cu complex

Fig. 2. XRD pattern of the calcined sample accompanied by the standard diffraction lines of CuO [PDF No.: 74-1021]
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the XRD pattern of the as-calcined sample at 600 
°C, approving the formation of CuO as a unique 
phase with high crystalline quality which is well-
matched with CuO standard lines (PDF No.: 74-
1021, crystal system: Monoclinic, and space group: 
C2/c). More than XRD, the monoclinic structure 
of the synthesized powder could be considered 
by the TEM investment. Fig. 3 shows TEM 

images of the as-synthesized sample with different 
magnifications. These approve the formation of 
CuO nanorods with 150-200 nm in length and less 
than 10 nm in diameter. It is clear that more than 
95% of the particles have a rod-like shape and could 
be considered as single-crystals with monoclinic 
structure. Therefore, preparing process of Cu-
complex provided suitable chemical conditions to 

Fig. 3. TEM images of the calcined sample with the magnification of (A) 28 KX, (B) 75 KX, (C) 100 KX, and (D) 125 KX
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support the oriented single-crystalline nucleation 
and growth procedure. In such a complex system, 
Cu ions are distributed homogeneously in pseudo-
octahedral sites and surrounded by one nitrogen 
and five oxygen atoms. This phenomenon restricts 
the free displacement of the atoms, resulting in 
efficient CuO crystallization (23). On the other 
hand, the situation of Cu atoms in the monoclinic 
Cu-complex structure is similar to that of Cu 
atoms in the monoclinic CuO system (24) which 
results in the formation of rod-like grains. The 
adsorption edge and bandgap energy (Eg) of the 
synthesized sample is one of the most important 
characteristics that should be determined. To this 
end, the solid-state UV–visible spectroscopy was 
recorded and the obtained results were presented 
as an absorbance curve and a Tauc curve in  

Fig. 4. The adsorption occurs at a wavelength of less 
than 500 nm. The Tauc plot showed that the Eg of 
the synthesized sample was about 2.8 eV, which is 
closer to that of Cu2O phase rather than CuO. This 
may be referring to either the specific morphology 
of the as-synthesized sample or the quantum 
confinement phenomenon (25).

CONCLUSION
A three-step chemical technique was developed 

to synthesize the CuO nanorods without using any 
template or surfactant. For this aim, dipicolinic acid, 
L-lysine, and copper nitrate were used for preparing 
a water-based solution. After aging the obtained 
solution for a week, some blue single-crystals were 
formed. Studying the single-crystal structure of the 
obtained compound proved that the blue crystals 

Fig. 4. (a) The absorbance curves, and (b) the Tauc curves of the synthesized sample
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are square-pyramidal copper complex. STA results 
showed that 600 º is the optimum temperature for 
firing the Cu-complex to achieve CuO crystalline 
phase. The XRD results approved the formation of 
pure CuO in the monoclinic crystalline structure. 
Particularly, TEM images validated the successful 
formation of nanorods with a length of 150-200 nm 
and a diameter of less than 10 nm. The DRS results 
indicated the high bandgap energy of 2.8 eV for the 
synthesized CuO nanorods in comparison to that 
of bulk CuO, 1.9-2 eV. 
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