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Metal oxide nanoparticles (NPs) produced by green chemistry approaches 
have received notable attention because of their significant physico-chemical 
properties and their remarkable uses in the area of nanotechnology. Currently, 
the sustainable improvement of synthesizing NPs by distinctive parts of plant 
extract has become a major focus of scientists and researchers, because 
these NPs have a minimum detrimental effect on ecosystem and minimum 
noxiousness for the human health. Among the metal oxide nanoparticles, 
alumina nanoparticles (Al2O3 NPs) draw a special attention due to their 
significant applications in ceramics, textiles, drug delivery, catalysis, waste-
water treatment and biosensor. Many natural biomolecules in plant extracts 
such as saponins, tannins, alkaloids, amino acids, enzymes, proteins, 
coumarins, polysaccharides, polyphenols, steroid and vitamins could be 
participated in bioreduction and stabilization of Al2O3 NPs. In the last decade, 
innumerable efforts were made to develop a sustainable eco-accommodating 
method of synthesis to avoid the perilous byproducts. This review focuses on 
the plants used for the green fabrication of Al2O3 NPs, their characterization 
methods and applications.
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INTRODUCTION
Nowadays, metal oxide nanomaterials are found 

to have peculiar uses in the area of catalysis, ceramics, 
semiconductors, space industry, medical science, 
agriculture, capacitors, batteries, absorbents, 
defense, chemical and biological sensors, 
optoelectronics, textile and food industry [1-34]. 
Among all known metal oxide nanomaterials, Al2O3 
NPs have drawn remarkable attention in the cutting 
edge of particular innovation, in the formulation 
and designing of recent antimicrobial agents for 
sustainable biomedical applications; because Al2O3 
NPs are chemically bio-inert and hydrolytically 
more stable [35]. The biocompatibility of Al2O3 
ceramic has already been mentioned by many 
researchers [36]. Al2O3 NPs with high purity were 

the first bio-ceramics widely utilized in clinical 
application, and it was recommended that the 
lifespan of Al2O3 is longer than the concerned 
patients [37]. Accordingly, Al2O3 NPs have been 
utilized in several branches (Fig. 1.) consisting of 
structural ceramics [36], catalysis [38], textiles [39], 
wastewater treatment [40] and protein separation/
purification [41]. Moreover, Al2O3 NPs also find 
extensive biomedical applications in biosensors 
[42], bio-filtration [41] and drug delivery [43].

Al2O3 NPs can be easily synthesized using several 
methods such as combustion [44], hydrothermal 
[45], laser ablation [46], mechanochemical [47], 
sol-gel [48], template method [49], microwave-
assisted [50], pechini method [51], precipitation 
method [52], solvothermal [53], pyrolysis [54] and 
ball milling [55]. However, these synthetic routes are 
quite expensive, potentially hazardous and require 
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long reaction time, perilous chemical precursors 
and special instruments for experimental work. 
Therefore, these routes create a bad impact on 
the ecosystem. This enhances the urgent need 
to replace or modify chemical preparation 
methodology and develop a sustainable, clean, 
non-toxic, cost effective and environmentally 
gracious process through green synthesis and other 
biological approaches. It is one of the promising 
pathways for fabrication of NPs as it is free from 
perilous chemicals as well as providing natural or 
herbal capping agents such as plant extracts, algae, 
fungi, bacteria, sugars, biodegradable polymers for 
the stabilization of Al2O3 NPs. 

The present review article highlights the current 
scenario and knowledge concerning the capability 
of various plant materials for eco-benevolent 
synthesis of Al2O3 NPs and presents a database that 
future researchers may be based on the biosynthesis 
of Al2O3 NPs using various plant material sources.

 
GREEN SYNTHESIS OF Al2O3 NPs

Nowadays, several methods have been 
successfully used to fabricate the Al2O3 NPs, 
however, they have some demerits such as the higher 
cost of the method and not being eco-benevolent 
since they make lots of pollution in the ecosystem 

because of using perilous solvents and toxic 
reducing agent. To mitigate these drawbacks, green 
chemistry approaches have been employed for the 
fabrication of Al2O3 NPs which are sustainable, less 
energy-intensive, eco-accommodating and increase 
the efficiency of the methods. Although chemical 
stabilizers are utilized more than plants part extract, 
that materials are not safe for the ecosystem and 
aspects of human health. The stabilization of Al2O3 
NPs is dependent on biomolecules such as amino 
acids, enzymes, proteins, steroids, phenols, tannins, 
sugar and flavonoids, which are already present in 
the plant extracts having medicinal importance 
and are eco-benign [2-3]. The main principle in 
the green chemistry approaches (Fig. 2.) is that the 
phytoconstituents are present in the plant parts 
serve the dual role of a natural reducing agent and 
a NP stabilizer. Some plants are already reported to 
facilitate Al2O3 NPs biosynthesis and all of them are 
described in this review (Table 1). The various parts 
of plant such as leaves, seed fruit and flower are used 
to fabricate Al2O3 NPs in different morphologies 
and sizes by biological approaches. The aqua soluble 
heterocyclic constituents are mainly accountable 
for formation and stabilization of nanoparticles. 
Thereafter, the biosynthesized NPs need to be 
characterized by using numerous techniques.

 
Figure 1. Various applications of Al2O3 NPs 

  

Fig. 1. Various applications of Al2O3 NPs
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PROTOCOL FOR BIOSYNTHESIS OF Al2O3 NPs
Bio-fabrication of Al2O3 NPs is an effortless, rapid, 

one pot synthesis and eco-friendly route without 
participation of any harmful and perilous chemical. 
Al2O3 NPs are synthesized using distinctive parts of 

plants such as leaves, fruit, seed and flower (Table 1). 
A completely easy and clean protocol is implemented 
for their biosynthesis (Fig. 3). The plant parts such as 
leaves, flowers, seeds, fruits, etc. are collected from 
distinctive sources and thoroughly washed with 

 
Figure 2. Importance of green chemistry  

  

Fig. 2. Importance of green chemistry

 
 
 
 
 
 
 
 
 
 
 

 

 
 
 
 
 
 
 

Table 1. Biosynthesis of Al2O3 NPs using different plant sources with morphology and size
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ordinary water as well as double distilled water 
to remove other undesirable materials. The plant 
materials are either grinded or dried to form the 
fine powder or used directly to obtain extract. The 
plant parts are hewed into small pieces or ground to 
fine powder and boiled in different special solvents 
(ethanol, water, and many others) and boiled at a 
suitable temperature to acquire extract. Different 
concentrations of aluminum salts as a metallic 
precursor and as-prepared plant extract can be 
used for the biosynthesis of Al2O3 NPs. There may 
be no need to add external chemical reducing 
agents or stabilizers, simply plant extract is mixed 
with aluminum salt solution and the phytochemical 
present in plant extract acts as a bio-reducing agent 
as well as stabilizing agent for the biosynthesis of 
Al2O3 NPs. The precise protocol of biosynthesis of 
Al2O3 NPs by Cymbopogon citratus leaf extract is 
mentioned by authors reported in literature [43]. 
The synthesized Al2O3 NPs solution is further 
centrifuged to separate out the NPs at excessive 
rpm, and wash thoroughly with suitable solvents. 
A fine powder of Al2O3 NPs is obtained and this 
is carefully collected for further characterization 
purposes.

CHARACTERIZATION TECHNIQUES FOR Al2O3 
NPs

To study the effect of synthesized Al2O3 NPs on 
ecosystem and human health, and affirmation in 

their formation, diverse routes of their formation 
and monitoring their typical effect are needed. 
Different instrumental techniques are used to 
characterize synthesis of Al2O3 NPs. 

Size
There are various methods to measure crystalline 

particles size of Al2O3 NPs. X-ray Diffraction 
(XRD) is also used to determine the particle size 
and exact phase identification of Al2O3 NPs. The 
size of suspended NPs in liquid phase is described 
by dynamic light scattering (DLS).

Crystallography
X-ray diffraction (XRD) is used to determine 

each and every crystal structure of Al2O3 NPs.

Morphology
Accurate morphology of Al2O3 NPs may be 

examined by using electron microscopies such as 
transmission electron microscope (TEM), atomic 
force microscopy (AFM) and scanning electron 
microscope (SEM). 

Specific surface Area
The nitrogen absorption technique based on 

Brunauer–Emmett–Teller (BET) isotherm is 
most commonly used for solid state, and nuclear 
magnetic resonance (NMR) technique is among 
the techniques could be used for liquid state.

 
Figure 3. Schematic representation of green synthesis of Al2O3 NPs 

 

Fig. 3. Schematic representation of green synthesis of Al2O3 NPs
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Elemental composition
Mass spectrometry (MS), X-ray photoelectron 

spectroscopy (XPS), energy dispersive spectroscopy 
(EDS) and atomic emission spectroscopy (AES) 
could be used to examine purity and elemental 
composition of Al2O3 NPs.

APPLICATIONS OF BIOGENICALLY SYNTHE-
SIZED Al2O3 NPs

Al2O3 NPs have many captivated applications 
in several branches of science and technology. 
However, the ceramics, textiles, biosensor and 
antimicrobial activities of the biosynthesized Al2O3 
NPs are very prominent nowadays. Accordingly, 
their peculiar applications are described here as a 
guidance to new researchers for future prospects.

Jalal et al. reported the Cymbopogon citratus leaf 
extract mediated Al2O3 NPs with the size of 34.5 
nm and investigated the antifungal activity of Al2O3 
NPs against various Candida spp. isolated from 
oropharyngeal mucosa of HIV+ patients [56]. 

Ansari et al. reported the biosynthesis of Al2O3 
NPs using leaf extract lemongrass and analyzed the 
antibacterial activity of the prepared NPs. These 
Al2O3 NPs exhibited an excellent antibacterial 
activity against MDR strains of P. aeruginosa, 
indicating their compatibility for pharmaceutical 
and other biomedical applications [58].   

Besides, Manikandan et al.  reported plant 
mediated synthesis of Al2O3 NPs using Prunus 
xyedonesis and examined the antibacterial activity 
of Al2O3 NPs against pathogenic bacteria. These 
biosynthesized Al2O3 NPs displayed effective 
antibacterial activity against gram-positive S. 
aureus and gram-negative E. coli bacteria. The 
synthesized Al2O3 NPs also showed nitrate removal 
ability. From the results, green synthesized Al2O3 
NPs is found to have promising applications in 
pollutant ion removal from aquatic systems [63].       

CONCLUSION
This review has summarized the current 

scenario of the research work in the area of 
green synthesis of Al2O3 NPs by using distinctive 
plant parts. This literature surveys displayed the 
multifarious experimental works on biosynthesis 
of NPs of silver, zinc, gold and copper NPs in 
comparison to Al2O3 NPs. Therefore, special 
attention of scientific community is required to 
develop this efficient, swift, sustainable, noxious, 
affordable and environmentally gracious method 
for biosynthesis of Al2O3 NPs through this green 

chemistry bottom to top approach. Furthermore, 
multifarious plant species could be exploited in 
future era towards completely facile and rapid 
biosynthesis of metal oxide NPs. Further research 
needs to develop outstanding applications, use of 
distinctive plant parts for fabrication and highlight 
the exact mechanism behind the synthesis of Al2O3 
NPs.
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