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Functionalized SBA-15 (immobilization of Pd on modified SBA-15) has been 
applied as an efficient catalyst for the preparation of indenopyrazolones by 
the multi-component reactions of phenylhydrazine, aromatic aldehydes, and 
indan-1,2,3-trione at room temperature in acetonitrile. The catalyst has been 
characterized by X-ray diffraction spectroscopy (XRD), field emission scanning 
electron microscopy (FE-SEM), transmission electron microscopy (TEM), X-Ray 
photoelectron spectroscopy (XPS), energy-dispersive X-ray spectroscopy 
(EDX), Fourier-transform infrared spectroscopy (FT-IR), N2 adsorption analysis, 
temperature-programmed desorption (TPD), and differential thermal analysis 
(TGA-DTA). This method has a number of merits including the reusability of the 
catalyst, low catalyst loading, excellent yields in short reaction times, and easy 
separation of products.
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INTRODUCTION
Pyrazolones demonstrate important biological 

properties such as being anticancer [1], anti-
bacterial [2], anti-inflammatory [3], antioxidant 
[4] and analgesic [5]. Indenopyrazoles display 
antidiabetic [6], antimicrobial [7], antitumor 
[8], and anticonvulsant [9] activities. Indeno-
fused heterocycles have attracted considerable 
attention from both medicinal and synthetic 
chemists in recent years [10-12].  These attributes 
make pyrazolones a noteworthy target in organic 
synthesis. A number of ways have been improved 
for the preparation of pyrazolones in the presence 
of such catalysts as acetic acid [13], [HMIM]HSO4 
[14], 3-aminopropylated silica gel [15], sodium 
dodecyl sulfate [16] silica-bonded S-sulfonic 
acid [17], and Ce/SiO2 composite [18]. While 
the development of each of these methods has 
contributed to moving the field forward, some of 
them suffer such drawbacks as prolonged reaction 
times, complicated work-up, low yields, and 
hazardous reaction conditions. Therefore, in order 

to avoid these drawbacks, finding an effective way 
for the preparation of indenopyrazolones is still 
favored. Microporous materials with regular-pore 
frameworks are a good choice for immobilizing  
ligands [19]. An improved understanding of the 
efficiency of ordered mesoporous silica (OMS) 
could be obtained by evaluating their potential 
applications in drug delivery, separation, gas 
storage, catalysis, and biomolecules [20]. SBA-15 
was employed due to its properties such as large 
pore volume, uniform-sized pores, high specific 
surface area, and thermal and hydrothermal 
stability [21]. The anchoring of a wide range of 
organic functional groups to the pore surface of 
SBA-15 improves the catalytic ability [22]. A stable 
attachment of ligand could be reached by post-
synthetically available ligand precursors to SBA-15 
[23]. We report herein the use of functionalized 
SBA-15 as an effective catalyst for the preparation 
of indenopyrazolones by the multi-component 
reactions of phenylhydrazine, aromatic aldehydes 
and indan-1,2,3-trione at room temperature in 
acetonitrile (Scheme 1). 

http://creativecommons.org/licenses/by/4.0/
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EXPERIMENTAL SECTION
Preparation of Ligand (imidazolidone)

In a 50 ml round-bottom flask, 4 mmol of 
hydantoin was dissolved in 4 mL water. Then 
an amount of saturated sodium hydrogen 
carbonate solution was added and the pH of the 
reaction mixture was maintained at 7.0. After 
that, ethanolamine (0.36 mL) was added, and the 
solution was warmed up gradually to 90 ° C. A 
solution of terephthaldehyde (4 mmol) in 4 mL of 
ethanol was added dropwise. Then the mixture was 
continuously stirred for 48 hrs at 120 °C and kept 
under reflux. A precipitate was formed by cooling 
in an ice-salt bath at about 0 °C. It was filtered 
and washed with H2O/EtOH 5:1. The structure of 

ligand (imidazolidone) was confirmed by 1H NMR 
and FT-IR spectrum presented in Figs. 1 and 5, 
respectively. 

Preparation of SBA-15 nanostructure
The hexagonal pore structure of SBA-15 

has been produced using pluronic 123 triblock 
copolymers (EO20–PO70–EO20) by the procedure 
as reported in the previous paper [24]. 

Preparation of 3-chloropropyltriethoxysilane atta-
ched to SBA-15 (chlorinated-SBA-15)

In a 50 mL round-bottom flask, 3 mmol of 
3-chloropropyltriethoxysilane and 1 g of calcined 
SBA-15 were suspended in dry toluene and refluxed 
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Scheme 1. Synthesis of indenopyrazolones catalyzed by Functionalized SBA-15 

   

Scheme 1. Synthesis of indenopyrazolones catalyzed by Functionalized SBA-15

 

Figure 1. 1H NMR of ligand (imidazolidone) DMSO 

   

Fig. 1. H NMR of ligand (imidazolidone) DMSO
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at 80 °C under an inert atmosphere for 24 hrs. Then, 
the solid was filtered and washed successively 
with ethanol. Finally, a white powder was dried 
under vacuum at 70 °C for 8 hrs to generate the 
3-chloropropyltriethoxysilane attached to SBA-15 
(Cl-modified SBA-15).

Preparation of modified SBA-15 (Immobilization of 
ligand (imidazolidone) to chlorinated-SBA-15)

The solution of ligand (imidazolidone) (2 
mmol) in dimethylformamide (10 mL) was added 
at 60% suspension of sodium hydride. The resulting 
mixture was stirred for 60 minutes. Then chloro-
modified SBA-15 (4.5 g, 26.3 mmol) was added to 
the reaction mixture. The solution was warmed 
up gradually to 80 ° C and stirred for 18 hrs. The 
reaction was quenched with 1 N HCl (20 mL, 20 
mmol) and the precipitated solid was collected 
by centrifugation, and then a pure product was 
obtained by washing with EtOH to produce 
modified SBA-15 (immobilization of ligand 
(imidazolidone) to chlorinated-SBA-15). 

Preparation of Immobilization of Pd on the modified 
SBA-15 (catalyst)

To a suspension of modified SBA-15 (1 g) in 
dry ethanol (20 mL), 0.1 g of PdCl2 was added and 
the solution was refluxed for 3 hrs. The yellow light 
solid was separated by centrifuging and was dried 
afterwards. Unreacted palladium from the surface 
was removed using Soxhlet extracted with acetone.

Synthesis of indenopyrazolones 
A mixture of phenylhydrazine (1.0 mmol), 

benzaldehydes (1.0 mmol), ninhydrin (1.0 mmol), 
and 6 mg functionalized SBA-15 (catalyst) in 
acetonitrile (10 mL) was stirred for the appropriate 
times. The reaction was monitored by TLC 
(n-hexane/ethyl acetate 7:3). After the completion 
of the reaction, the catalyst was recycled by a simple 
filtration.  The catalyst was washed with a small 
amount of hot ethanol, dried in an oven at 80 °C 
for 6 hours, and then reused for the next run as 
indicated above for the model reaction. The solvent 
was evaporated using a rotary evaporator and the 
residue was washed with cold diethyl ether to get 
pure product. The characterization data of the 
compounds are presented below.

cis-3a,8b-Dihydro-3a,8b-dihydroxy-1,3-
diphenylindeno[1,2-c]pyrazol-4(1H)-one (4a): 
Yellow solid; Mp. 221-223 °C, IR (KBr): νmax =  
3435, 3053, 1736, 1458 cm-1. 1H NMR (400 MHz, 

CDCl3):  δ (ppm) = 6.12 (s, OH); 6.17 (s, OH); 7.15 
(d, J = 8.0 Hz, 1H, ArH); 7.18-7.30 (m, 3H, ArH); 
7.40 (t, J = 7.6 Hz, 1H, ArH); 7.48 (t, J = 7.6 Hz, 1H, 
ArH); 7.52–7.66 (m,  5H, ArH); 8.22 (d, J = 7.6 Hz, 
2H,  ArH); 8.48 (d, J = 7.6 Hz, 1H,  ArH). 13C NMR 
(100 MHz, CDCl3): δ (ppm) = 89.2 (C); 96.9 (C); 
118.2 (2 CH); 121.4 (CH); 122.6 (CH); 123.2 (CH); 
124.0 (CH); 126.2 (2 CH); 129.5 (2 CH); 130.7 
(CH); 130.8 (C); 132.8 (2 CH); 133.5 (CH); 137.2 
(C); 139.8 (C); 142.3 (C); 147.8 (C); 196.7 (C=O). 
Analysis for C22H16N2O3: calcd. C, 74.15; H, 4.53; N, 
7.86%; Found C, 74.12; H, 4.56; N, 7.90%.

cis-3a,8b-Dihydro-3a,8b-dihydroxy-3-(4-
methoxyphenyl)-1-phenylindeno[1,2-c]pyrazol-
4(1H)-one (4b): Yellow solid; Mp. 211-214 °C, IR 
(KBr): νmax = 3422, 3282, 1702, 1592 cm-1. 1H NMR 
(400 MHz, CDCl3):  δ (ppm) = 3.65 (s, OCH3); 6.12 
(s, OH); 6.23 (s, OH); 6.88 (d, J = 8.2 Hz, 2H, ArH); 
7.05 (t, J = 7.2 Hz, 1H, ArH); 7.18 (t,  J = 7.4 Hz, 2H,  
ArH); 7.27 (t, J = 7.2 Hz,  1H,  ArH); 7.37 (t, J = 7.4 
Hz, 1H, ArH); 7.50 (d, J = 7.8 Hz, 1H, ArH); 7.55 
(d, J = 7.4 Hz, 1H, ArH); 7.60 (d, J = 7.8 Hz,  2H, 
ArH); 8.02 (d, J = 8.4 Hz, 2H, ArH). 13C NMR (100 
MHz, CDCl3): δ (ppm) = 55.4 (OCH3); 90.1 (C); 
96.5 (C); 113.7 (2 CH); 117.8 (2 CH); 122.3 (CH); 
123.7 (CH); 124.3 (C); 125.8 (CH); 128.6 (2 CH); 
129.3 (2 CH); 130.4 (CH); 135.3 (C); 136.7 (CH); 
142.8 (C); 143.3 (C); 147.7 (C); 160.4 (C); 197.5 
(C=O). Analysis for C23H18N2O4: calcd. C, 71.49; H, 
4.70; N, 7.25%; Found C, 71.36; H, 4.60; N, 7.17%.

RESULTS AND DISCUSSION
Scheme 2 shows preparation of the 

immobilization of Pd on  modified SBA-15 
(catalyst).

The structure of ligand (imidazolidone) was 
confirmed by 1H NMR and FT-IR spectrum 
presented in Figs. 1 and 5, respectively.

The effect of modification on the structural 
framework of SBA-15 is monitored by a small-angle 
X-ray diffraction method (Fig. 2). A significant 
degree of long-range ordering of the structure has 
been determined by an intense diffraction peak (1 
0 0). Two secondary high order peaks with lower 
intensities corresponding to (1 1 0) and (2 0 0) 
approve 2D-hexagonal planes of the mesoporous 
[25]. On modification with ligand and metal, the 
intensities of the peaks are decreased which can be  
due to silylation inside the mesopores of SBA-15. 
The presence of similar peaks for Pd@modified 
SBA-15 indicates that the structural ordering of 
SBA-15 is not diminished during the silylation 
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Scheme 2. Different steps for synthesis of immobilization of Pd on  modified SBA-15 (Pd@modified SBA-

15). 

   

Scheme 2. Different steps for synthesis of immobilization of Pd on  modified SBA-15 (Pd@modified SBA-15).

 

Figure 2: The XRD pattern of SBA-15 and Pd@modified SBA-15 

   

Fig. 2. The XRD pattern of SBA-15 and Pd@modified SBA-15
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procedure. The 2D-hexagonal structure of SBA-15 
is also preserved regardless of the ligand and metal 
loading.  

The porous structure of SBA-15 and Pd@
modified SBA-15 are analyzed by N2 sorption 
isotherms and pore size distributions (Fig. 3). Type 
IV adsorption-desorption isotherm with an H1 
hysteresis loop is observed for both of them which 
can be characterized as mesoporous solids [26]. 
The isotherm of Pd@modified SBA-15 indicates a 

lower N2 uptake, related to a diminution in pore 
volume and the specific surface area (Table 1). The 
height of the capillary condensation step slightly 
reduces due to pore blocking effect by changing 
in pore size distribution. Indeed, less uniformity 
of the mesopore size distribution is visible in 
functionalized SBA-15. 

The FESEM of SBA-15 and Pd@modified SBA-
15 manifest structural integrity and morphology 
(Fig. 4 a,b). The integrity of the porous structure 

 

Figure 3. N2 adsorption‐desorption isotherms and pore size distributions of SBA‐15, Pd@modified SBA‐15 

   

Fig. 3. N2 adsorption-desorption isotherms and pore size distributions of SBA-15, Pd@modified SBA-15

Table 1. Structural and Textural Parameters of SBA-15 and Pd@modified SBA-15 
 

Entry Sampel S BETa [m2 g-1] Dp
b [nm] VP

c[cm3 g-1] 
1 SBA-15 758.68 9.40 0.7378 
2 Pd/PBMBI-SBA-15 161.89 7.59 0.3587 

a S BET = surface area. b Dp = average pore width. c Vp = total pore volume. 
  

Table 1. Structural and Textural Parameters of SBA-15 and Pd@modified SBA-15
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of SBA-15 is preserved after loading Palladium and 
ligand. 2D Hexagonal network of the Pd@modified 
SBA-15 is determined by the TEM image that 
shows parallel channels (Fig. 4 c).

From the FT-IR spectra (Fig. 5), the SBA-15 

spectrum displays a broad absorption band at 
3439 cm-1  which is associated with the presence of 
silanol groups. A low-intensity band at 1632 cm-1 is 
attributed to the deformation modes of O-H bonds 
from adsorbed water. The Si-O-Si bond stretching 

 

Figure 4. SEM images of (A) SBA‐15 and (B) Pd@modified SBA‐15 (C) TEM image of Pd@modified SBA‐15 

   

Fig. 4. SEM images of (A) SBA-15 and (B) Pd@modified SBA-15 (C) TEM image of Pd@modified SBA-15

 

Figure 5. FT‐IR spectra of ligand, SBA‐15, chlorinated‐SBA‐15, modified SBA‐15, Pd@modified SBA‐15 

   

Fig. 5. FT-IR spectra of ligand, SBA-15, chlorinated-SBA-15, modified SBA-15, Pd@modified SBA-15
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vibrations with the bending vibrations are revealed 
at 1077 cm-1, 801 cm-1, and 455 cm-1. The stretching 
vibrations of the Si-OH and Si-O-Si bonds appear 
as a weak band at 960 cm-1. The peaks related to 
silica network of SBA-15 are observed with the 
same intensity in all processes of functionalization. 
In the spectrum of chlorinated-SBA-15, peaks at 
3114 cm−1 and 1590 cm-1 are associated with the 
vibration of C–H bond in the propyl group. A peak 
at 709 cm-1 can be attributed to the C-Cl bonds. 
The results of the 1H NMR spectrum of ligand are 
approved by FT-IR spectrum. The FT-IR spectrum 
of ligand exhibits three sharp peaks at 1730, 1665 
and 1610 cm−1 attributed to the C=O and C=C 
bonds, respectively. Moreover, the absorption band 
at 3450 cm−1 is attributed to the NH stretching 
vibrations. By loading Pd, the intensity of the 
absorption band at 3450 cm-1 has diminished and 

slightly moved towards the lower frequency region. 
The absorption band at 1520 cm-1 has appeared due 
to ring >C=N stretching vibration. Based on the 
results, the complexion of Pd ions with modified 
SBA-15 has been approved.

The peaks of carbon, nitrogen, oxygen, silicon, 
and palladium became visible in the EDX spectra 
which confirmed the uniform distribution of ligand 
and palladium over SBA-15 (Fig. 6). The weight 
percentages of elements calculated by EDX are: C 
(21.97%), N (5.75%), O (46.90%), Si (20.80%), Pd 
(4.58%).

The TGA analysis demonstrates that Pd@
modified SBA-15 has higher weight loss than that of 
neat SBA-15 (Fig. 7). The weight loss was measured 
at about 28% up to 300 °C in two steps: the removal 
of physically absorbed water in the first step and, 
in the second step, the thermal decomposition of 

 
 Figure 6. EDX spectrum of Pd@modified SBA‐15 

   

Fig. 6. EDX spectrum of Pd@modified SBA-15

 

Figure 7. TGA and DTA curves of SBA‐15 and Pd@modified SBA‐15 

   

Fig. 7. TGA and DTA curves of SBA-15 and Pd@modified SBA-15
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the organic functional group which starts above 
300 °C. Consequently, the high decomposition 
temperature (above 300 °C) is evidence of the high 
thermal stability of complex Pd/ligand.

The atomic concentration of catalyst and 
electronic state of the palladium has been 
characterized by X-Ray photoelectron spectroscopy 
(Fig. 8). N 1s, C 1s, and Pd 3d peaks are found on the 
side of Si 2s, Si 2p, and O 1s peaks that approve the 
loading of ligand and metal on the SBA-15 surface. 
The N 1s spectrum of Pd@modified SBA-15 shows 
a peak at 401 eV due to σ*(N-H) resonance. Also, 

a shoulder is observed at 400 eV which may be 
caused by π*(NHC=O). Amide π* resonances occur 
at very similar energies as the σ*(N–H) resonance. 
The intense and broad C 1s spectrum has exhibited 
a peak at 285 eV for C–Si, C–H*, σ*(C–C), and 
σ*(C–N) resonances [27]. The presence of the SiO2 
structure is confirmed by binding energies at 103 
and 150 eV for Si 2s and Si 2p, respectively [28]. The 
binding energy of O 1s is 533.52 eV which could 
be assigned to Si-O, C-O, and C=O. Two distinct 
peaks at 337.1 and 339 eV have been observed in 
Pd 3d spectrum of Pd@modified SBA-15 which 

 

Figure 8. XPS spectra of O 1s, N 1s, C 1s, Si 2p, Pd 3d and Pd@modified SBA‐15 

   

Fig. 8. XPS spectra of O 1s, N 1s, C 1s, Si 2p, Pd 3d and Pd@modified SBA-15
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is associated with 3d 5/2 and 3d 3/2, respectively. 
Atomic percentage concentrations of the Pd@
modified SBA-15 calculated by XPS: C (77.58), N 
(6.87), O (9.41), Si (5.42), Pd(0.15).

NH3-TPD analysis has been used to calculate 
the surface acidity of the catalyst (Fig. 9). The 
TPD curve of initial SBA-15 exhibits no peaks 
that determined SBA-15 material has no acidity. 
The immobilization of Pd/ligand complex leads to 
improving the acidity of the catalyst as opposed to 
the initial SBA-15. The TPD curve of Pd@modified 
SBA-15 represents a sharp peak at 300 °C and a peak 
around 450 °C correlated with weak and medium 
acid sites, respectively. Also, there is a shoulder 

peak at ca. 550 °C that is attributed to strong acid 
sites. Indeed, there are some weak, medium, and 
strong acid sites in the Pd@modified SBA-15 that 
make it a very effective catalyst.

Using the reaction of phenylhydrazine, 
benzaldehyde, and indan-1,2,3-trione as a model 
procedure, we conducted it in the presence of 
Et3N, p-TSA nano-NiO, Ligand, SBA-15, modified 
SBA-15, and Pd@modified SBA-15. The results 
are summarized in Table 2. We found that the 
reaction gave very useful results in the presence of 
Pd@modified SBA-15 (6 mg for a 1 mmole scale 
reaction) in acetonitrile at room temperature. 
Furthermore, we  conducted the reaction of 

 

Figure 9. NH3‐TPD spectra of SBA‐15 and Pd@modified SBA‐15 

 
Table 2. Optimization of reaction conditions using different catalysts a 
 

Entry Catalyst (amount) Solvent Time (min) Yielda % 
1 none CH3CN 250 16 
2 Et3N (5 mol%) CH3CN 200 22 
3 nano-NiO (5 mol%) CH3CN 200 46 
4 p-TSA (8 mol%) CH3CN 200 35 
5 Ligand (5 mol%) CH3CN 200 41 
6 SBA-15 (5 mol%) CH3CN 150 50 
7 modified SBA-15 (8 mg) CH3CN 100 64 
8 Pd@modified SBA-15 (4 mg) CH3CN 30 83 
9 Pd@modified SBA-15 (6 mg) CH3CN 30 92 

10 Pd@modified SBA-15 (8 mg) CH3CN 30 92 
11 Pd@modified SBA-15 (8 mg) H2O 150 66 
12 Pd@modified SBA-15 (8 mg) DMF 100 72 
13 Pd@modified SBA-15 (8 mg) EtOH 70 80 

  a Phenylhydrazine (1 mmol) , benzaldehyde (1 mmol), and indan-1,2,3-trione (1 mmol) 
    b Isolated yield 
  

Table 2. Optimization of reaction conditions using different catalysts a

Fig. 9. NH3-TPD spectra of SBA-15 and Pd@modified SBA-15
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phenylhydrazine and indan-1,2,3-trione with 
other aromatic aldehydes and consistently found 
satisfactory results (Table 3). Yields were slightly 
higher for aldehydes substituted with electron-
withdrawing groups.  

The reusability of our nanocatalyst was 
examined for the model reaction, and it was found 
that product yields lessened only to a very small 
extent on each reuse (run 1, 92%; run 2, 92%; run 
3, 91%; run 4, 91%; run 5, 90%; run 6, 90%).  

Scheme 3 shows a plausible mechanism for this 
process in the presence of Pd@modified SBA-15. At 
the start, the activated aldehyde by Pd@modified 
SBA-15 is condensed with the phenylhydrazine 
to give intermediate I, which attacks indan-1,2,3-
trione to afford the zwitterionic intermediate II. 
Its tautomer III undergoes an intramolecular 
nucleophilic addition reaction, which affords the 
product by an H-atom-transfer reaction. A highly 
regiospecific synthesis and crystal structure of 

Table 3. Synthesis of indenopyrazolones 
 

Entry R product Time (min) Yield (%)b 
m.p. 

found (°C) 

1 H 4a 30 92 221-223 

2 4-OMe 4b 45 84 211-214 

3 4-Me 4c 45 86 249-251 

4 4-Cl 4d 25 94 234-236 

5 4-Br 4e 25 94 222-224 

6 4-NO2 4f 25 96 242-244 

7 3- NO2 4g 30 93 240-243 

8 4-OH 4h 50 82 202-204 
a Phenylhydrazine (1 mmol) , aromatic aldehydes (1 mmol), and indan-1,2,3-trione (1 mmol) 
b isolated yield 
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Scheme 3. Proposed mechanism for the synthesis of indenopyrazolones 

 

Scheme 3. Proposed mechanism for the synthesis of indenopyrazolones
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indenopyrazolone was reported by Yavari and 
coworkers [29]. The cis configuration of the hydroxy 
groups was confirmed by NMR (both –OH groups 
are involved in intramolecular H-bond and X-Ray 
crystal) [29-31].

CONCLUSIONS
In conclusion, we have reported an efficient 

procedure for the synthesis of indenopyrazolones 
through a three-component reaction involving 
phenylhydrazine, aromatic aldehydes and indan-
1,2,3-trione. Our procedure uses Pd@modified 
SBA-15 at room temperature in acetonitrile. The 
catalyst has been characterized by XRD, FE-SEM, 
TEM, EDX, XPS, FT-IR, N2 adsorption analysis, 
TPD, and TGA-DTA. Very satisfactory yields, the 
excellent reusability of the catalyst, low catalyst 
loading, and easy separation of products are the 
merits of this method.
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