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INTRODUCTION
Polyoxometalates (POMs), as a series of 

anionic metal-oxo clusters of Mo, W, V, Nb, and 
Ta, are generally utilized as building blocks to 
construct nano- or micro-materials. Because of 
their abundant structure and distinct properties, 
the studies of POMs are of particular interest in 
a wide variety of disciplines, such as catalysis, 
electrochemistry, biochemistry, optical and 
material engineering [1-8]. As a branch of POMs, 
polyoxovanadates (POVs) play an important 
role in POM chemistry. The decavanadate anions 
[HnV10O28]

(6-n)- are one of the dominant vanadium 
oxoanions present in an aqueous solution. Many 
crystal structures of simple inorganic decavanadates 
and associated with organic counterions have been 

reported so far [9, 10]. For example, both the 
heterocyclic organic ligands and charge transfer 
can introduce photoluminescence properties to the 
POM systems. Until now, several inorganic POVs 
incorporating decavanadate [V10O28]

6- structures 
have been shown to act as efficient luminescent 
probes because of their satisfactory luminescence 
behaviors derived from O→V charge transfer [11-
15]. Among the dazzling detection technologies, 
fluorescence detection has been becoming a feasible 
operation due to its high selectivity, convenience, 
rapid response, facile operation, and so forth [16]. 

Nanomaterials in the form of nanoparticles, 
nanofilms, nanocomposites, and nanoflakes have 
been used for various purposes, such as improved 
sensing abilities [17-22]. In recent years, the 
synthesis and characterization of nanomaterials 
have received attention owing to their size-
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dependent chemical and physical properties [23, 
24]. It has been confirmed that nanoscale POMs 
are more effective than bulk materials in particular 
sensing applications [25, 26]. Several methods have 
been developed to prepare nanoscale materials, 
among which the sonochemical synthesis presents 
a simple, environmentally green, efficient, and 
inexpensive platform. Ultrasonic irradiation 
provides a nanoreactor for the facile synthesis of 
nanomaterials along short reaction times [27, 28].

Dopamine is known as a biomarker for 
numerous diseases such as schizophrenia, epilepsy, 
Parkinson’s, and memory loss [29]. The optical 
sensing of dopamine molecules for the diagnosis 
of such diseases has attracted much attention as 
a simple methodology due to its easy-to-use, fast 
response, and cost-efficiency [29]. In this study, we 
synthesized an organic-inorganic hybrid compound 
based on polyoxovanadate (HNic)6[V10O28].H2O 
(1). The nanoscale 1 was prepared under ultrasonic 
irradiation and was fully characterized. The optical 
properties of 1 were investigated and the green 
emission of these nanoparticles with a maximum 
at 530 nm was utilized for naked-eye DA detection.

EXPERIMENTAL METHOD
Materials and methods

Reagents used in this work were consumed 
without further purification. The ultrasonic 
syntheses were carried out on a SONIC 3MX 
with the power of 160W. The FT-IR spectra of 1 
were recorded by utilizing a Bruker Enquinox 55 
spectrometer with KBr pellet in the range of 400-
4000 cm-1.  Powder X-ray diffraction (PXRD) 
measurements were performed using a PANalytical 
X’Pert PRO MRD equipped with a CuKα radiation 
source (λ = 1.54184 Å). SEM images were obtained 
with a FEI Quanta 650F microscope with a beam 
voltage of 20 kV. The absorption spectra of the 
organic solutions and water suspensions were 
registered in the Agilent Cary 60 spectrophotometer 
using a 1x1 cm quartz cuvette. The emission 
spectra of nanoscale 1 were recorded through 
the PTI QuantaMaster 300 phosphorescence/
fluorescence spectrophotometer (Horiba Ltd.). 
Energy Dispersive X-ray Spectroscopy (EDS) was 
coupled with FEI Quanta 650F microscope.

A deep yellow single crystal of 1 was selected 
to collect data on a four-circle KUMA KM4 
diffractometer with a two-dimensional CCD area 
detector. The graphite monochromatized MoKα 
radiation (λ = 0.71073 Å) and the ω-scan technique 

(∆ω = 1°) were applied for data collection. Data 
collection and reduction, along with absorption 
correction, were accomplished via the CrysAlis 
software package [30]. The structure was solved 
by direct methods using SHELXT [31] giving 
positions of almost all non-hydrogen atoms. The 
other atoms were S3 localized with subsequent 
difference Fourier syntheses. The structure was 
refined using SHELXL-2018 [31] with anisotropic 
thermal displacement parameters. The data were 
deposited in Cambridge crystallographic data 
center with deposition number CCDC 1824532.

Synthesis of (HNic)6[V10O28].H2O  
Twenty ml aqueous solution of VOSO4.5H2O 

(0.5 mmol, 125 mg) was mixed with 10 ml aqueous 
solution of nicotinamide (1 mmol, 122 mg), and the 
resultant solution was refluxed for four hours. The 
final mixture was cooled down to room temperature 
and precipitates were filtered. The single crystals of 
1 were grown through slow evaporation of filtered 
solution after two days. (yield 72%), m.p. > 300 
°C. Anal. Calcd for V10O28·6(C6H7N2O).2(H2O): C 
24.93, H 2.65, N 9.69%. Found: C 25.32, H 2.51, N 
10.01%. 

Synthesis of nanoscale (HNic)6[V10O28].H2O  
For the synthesis of nanoscale 1, two strategies 

were applied simultaneously, including utilizing 
weak solvent and operating ultrasonic irradiation. 
To prepare nanoscale (HNic)6[V10O28].H2O, an 
aqueous solution of VOSO4.5H2O (15 ml, 0.05M) 
was positioned in an ultrasonic bath. A solution 
of nicotinamide (30 ml 0.05M) in a water/ethanol 
mixture with a 1:1 volume ratio was added dropwise 
to the above solution. The mixture was irradiated 
for 1h with a maximum power output of 160 W. To 
investigate the effect of weak solvent addition, the 
water/ethanol volume ratio was changed from 1:1 
to 1:2.

Naked-eye DA detection
A stable suspension (1mg/ml) was prepared 

by floating nanoscale 1 into distilled water 
under ultrasonic irradiation (10 min). For DA 
detection 2ml of the formed suspension was mixed 
with dopamine solutions (2ml) with different 
concentrations from 1 to 30 μM. Subsequently, the 
color changes were recorded.

For the paper test, the cellulose paper was cut 
into a 20 cm × 12 mm strip. One hundred microliters 
of the nanoscale 1 suspension were drop-casted 
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onto the strip and dried in a vacuum chamber for 
3h, and afterward circles (diameter ≈1cm) were cut 
from the strip. Then 10 μl of the various dopamine 
concentrations were pipetted on top of the circles. 
The fluorescence intensity changes were recorded 
in a dark box using a UV lamp, excited at 365 nm.

RESULTS AND DISCUSSION
Crystal structure of (HNic)6[V10O28].H2O

(HNic)6[V10O28].H2O (1) is crystallized in 
the monoclinic system with space group C2/c 
(Table S1). The crystal structure of compound 1 is 
similar to the previously reported structure which 
had been synthesized with more precursors and 
a complicated route [32]. The asymmetric unit 
consists of three crystallographically independent 
mono-protonated nicotinamide cations (HNic+), 
one half-decavanadate anion, and a water molecule 
(Fig. 1a). Each water molecule is a bridge between 
two decavanadate anions through O1W–H1W···O9 
and O1W–H2W···O7v hydrogen bondings. 
The decavanadate cluster can be presented as 
a polyoxometalate with three different types of 
vanadium atoms (Fig S1). Six vanadium atoms are 
located in a plan (Vb and Vc) and four vanadium 
atoms are present on both sides of the plan (Va). 
The 28 oxygen atoms are coordinated to vanadium 
atoms through six to form [V10O28]

6- cluster. The 
oxygen atoms in decavanadate are classified into four 
types including μ6, μ3, μ2, and terminal coordination 
modes. Six HNic+ cations are connected to the 
decavanadate anion through the hydrogen bonding 
between protonated pyridine rings and terminal 
coordinated oxygen of polyoxometalate anions 
(Fig. 2). Moreover, protonated nicotinamide is 
connected via hydrogen bonding among amide 
groups. Therefore, noncovalent interactions such 
as N–H···O3, O–H···O hydrogen bonding with 

D⋯A interaction distance ranging from 2.570(2) 
Å to 2.852(2) Å, and ion-pairing interaction 
between [V10O28]

6- and  HNic+ have a key role in the 
supramolecular architecture of compound 1. The 
details of hydrogen bonding are presented in Table 
S2. Furthermore, in the supramolecular packing of 
compound 1, there are π-π interactions between 
pyridine rings with interaction distances ranging 
from 3.510 to 3.624 Å (Fig. 3).

Sonochemical synthesis, morphology, and chemical 
stability

The nanostructures of 1 were synthesized 
under ultrasonic irradiation with different 
volumes of weak solvent. The bulk crystals of 
1 are partially soluble in water and completely 
insoluble in ethanol. Thus, ethanol was selected 
as a weak solvent for the sonochemical synthesis 
of nanoscale 1. The morphology of bulk crystals 
and their nanostructures were studied using SEM 
images. As shown in Fig. 4, the bulk crystals of 1 
have octahedral morphologies. The SEM images 
of nanoscale 1, with 1:1 ethanol to water volume 
ratio, demonstrate a monodispersed distribution 
of nanoparticles with octahedral morphologies 

Fig. 1 View (HNic)6[V10O28].H2O (1) with the anisotropic dis-
placement parameters. The labelling scheme of the atoms is 

shown only in the asymmetric unit. Fig. 2 Supramolecular architecture of compound 1 along 
b-axis (dashed lines represent the O-H..O and N-H…O hy-

drogen bonds)

Fig. 3 The packing structure of compound 1 derived from π-π 
interactions and hydrogen bonds along c-axis.
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similar to those found for the bulk crystals (Fig. 
4b). It is evident from Fig. 4c that by increasing 
the volume ratio of ethanol to water, the size and 
crystallinity of nanoparticles are decreased.

The FT-IR spectroscopy was utilized to 
corroborate the functional groups of bulk crystals 
and the chemical stability of nanoscale 1. As 
presented in Fig. 5a, the infrared spectrum of 
1 shows that the N–H vibration peaks at 3200-
3400 and 1618 cm-1 can be ascribed to the amide 
and protonated pyridyl groups. The characteristic 
bond of V=O symmetric vibration (terminal 
coordination mode in decavanadate cluster) at 
950 cm-1 and the presence of the V-O-V bridging 
vibration bond at 819 cm-1 confirm the formation 
of decavanadate cluster. The FTIR spectrum of 
nanoscale 1 is compatible with the FT-IR spectrum 

of bulk crystals indicating the chemical stability of 
these nanoparticles (Fig. 5b).

The comparison between the PXRD patterns of 
the nanoscale 1 and the simulated pattern of single 
crystals’ XRD confirms the single-phase purity of 
nanoscale 1 (Fig. 6). In addition, as mentioned 
before, these patterns indicate that the crystallinity 
of nanoscale 1 is decreased by increasing the 
amount of ethanol and some peaks are eliminated 
from the PXRD pattern (Fig. 6c). 

Optical properties and naked-eye dopamine 
detection

To study the optical properties of nanoscale 1, 
the UV-Vis absorption spectrum of this compound 
was recorded from 200 to 700 nm (Fig. 7a). The 
absorption band observed around 230 nm can be 

Fig. 4 (a) SEM image of compound 1, (b) and (c) SEM images of nanoscale 1 formed by different ethanol/water volume ratio including 
1:1 and 2:1.

Fig. 5 FT-IR spectra of compound 1 as (a) bulk crystals and (b) 
nanoparticles produced by sonochemical method.

Fig. 6 (a) The simulated pattern based on single-crystal X-ray 
diffraction data of 1, XRD patterns of nanoscale 1 formed by 

different water to ethanol volume ratios: (b) 1:1 and (c) 1:2.
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ascribed to π-π* of nicotinamide and the band 
with a maximum at 360 nm can be assigned 
to π(O)→d(V) charge transfer transitions. The 
luminescence behaviors derived from O→V charge 
transfer were investigated upon a 365 nm excitation. 
The solid-state fluorescence of nanoscale 1 upon 
a 365 nm excitation exhibited a broad band with 
green emission (Fig. 7b).

To assess the capability of nanoscale 1 for DA 
detection, the optical properties of these nanoparticles 
in the presence of different concentrations of 
dopamine molecules were investigated. As shown in 
Fig.8a, polydopamine formation is observed as a color 
change from yellow to black by mixing dopamine 

solutions and suspensions of nanoscale 1. According 
to previous studies, vanadium can catalyze dopamine 
oxidation [33]. The mechanism of polydopamine 
formation is shown in scheme 1[34]. In situ formation 
of polydopamine was observed in the presence of 
nanoscale 1. The oxidation and polymerization of 
dopamine were very fast and a stable suspension of 
polydopamine was formed. Visual DA detection 
based on a paper test strip was performed by a UV 
lamp at 365 nm excitation wavelength. It is evident 
from Fig. 8b that polydopamine formation can 
quench the emission of nanoscale 1 and fluorescence 
intensity changes can be easily recognized by naked-
eye at different DA concentrations. 

Fig. 7 (a) Absorption spectra of nanoscale 1 and (b) emission spectra of nanoscale 1 upon a 365 nm excitation.

Fig. 8 (a) The photographs show the color change of nanoscale 1 suspensions after adding different concentrations of DA molecules 
(b) The photographs of the paper strips in the presence of various amounts of DA under sunlight and a 365 nm UV lamp.
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To clarify the mechanism of DA detection, the 
suspensions of nanoscale 1 were centrifuged (2000 
rpm) for 5 min in the presence of DA molecules, 
and the black precipitates were separated from 
the suspensions. Energy Dispersive X-Ray 
spectroscopy was utilized to analyze the chemical 
composition of black precipitates (Fig. 9). The mass 
ratios of C, N, and O to V confirm the formation 
of polydopamine nanoparticles on the surface of 
nanoscale 1. As presented in scheme 1, the first step 
of polydopamine formation is an oxidation reaction 
that requires a catalyst to accelerate the oxidation 
of dopamine and the other steps are spontaneous 
[35, 36]. In several studies, the catalysis capability 
of decavanadate for oxidation reactions has been 
confirmed [37-39]. The formation of polydopamine 
was examined in the absence of nanoscale 1 and 

the in situ formation of black precipitate was not 
observed. In addition, polydopamine formation 
can quench the fluorescence of nanoscale 1 due to 
a large molecular network of polydopamine [40]. 
These results confirm the catalysis capability of 
compound 1 for the polydopamine formation and 
the quenching mechanism of fluorescence intensity 
in the presence of DA molecules.

CONCLUSION 
Nanostructures of (HNic)6[V10O28].H2O 

were prepared using two strategies including 
utilizing a weak solvent and operating ultrasonic 
irradiation. The results reveal a direct correlation 
between the volume of the weak solvent and 
the size of nanoscale 1. Additionally, the optical 
properties of compound 1 were investigated and 

Scheme 1. The mechanism of polydopamine formation [34].

Fig. 9 SEM, EDS, and mapping of nanoscale 1@polydopamine.
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the green fluorescence of nanoscale 1 upon a 
365 nm excitation can be assigned to π(O)→d(V) 
charge transfer transitions. Nanoparticles of 1 
have shown to be an efficient nano-catalyst for 
dopamine oxidation and polydopamine formation. 
The formation of polydopamine nanoparticles was 
very fast and it quenched the green fluorescence of 
nanoscale 1; this capability was used for naked-eye 
dopamine detection.
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