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The palladium metal is the most frequently used metal because of its 
excellent catalytic efficiency and most flexible varying oxidation state. 
So,  we report  that palladium nanoparticles (Pd NPs) stabilized by a 
ligand (o-vanilindiphenylethanedionedihydrazone, L)  using reverse 
micelles method have been synthesized, while all particles are in 
spherical shape and ranging between 10 and 15 nm. This has been 
characterized by 1H NMR, IR, UV, X-ray powder diffraction (XRD), 
energy-dispersive X-ray spectroscopy (EDX), and scanning electron 
microscope (SEM) analyses. These nanoparticles were used as a catalyst 
for coupling reaction between aryl halides with terminal alkenes, Heck 
reaction, in the presence of potassium carbonate (K2CO3) as a base 
and NMP (N-Methyl-2-pyrrolidone) as a solvent.  The present catalyst 
is an air and moisture stable and has significant catalytic activity in 
Heck cross-coupling reactions under operating conditions. Various aryl 
halides and terminal alkenes were coupled smoothly under air to afford 
the corresponding cross-coupled products in excellent yields.

INTRODUCTION
Transition metal-catalyzed carbon-carbon bond 

forming reactions is widely employed methods 
of modern organic chemistry [1-3]. The use of 
catalytic method has been found a most interesting 
topic in the preparation of many natural products, 
materials science as well as agrochemical industry 
[4-7]. In this research topic, various metals are 
being employed in coupling reactions, however, in 
most cases, palladium metals are most frequently 
used because of their excellent catalytic efficiency 
and most flexible varying oxidation state [8-13]. 
In the last decade, synthesis of metal-nanoparticle 
(M-NPs) has attracted intensified attention, 
therefore, a maximum effort has been devoted to 

the development of nanoparticles. The advantages 
of both nanocomposite and catalysis are the most 
interesting combination in heterogeneous and 
homogeneous catalysis.

The metal nanoparticles have exhibited very 
unusual and size-dependent properties like optical 
[14], magnetic [15, 16], electronic [17, 18], and 
chemical [19, 20] properties. The maximum 
efficiency showed by the nanoparticles depends 
on the size and shape. These nanoparticles exhibit 
superior properties than those of their bulk 
materials. They also show a high catalytic activity 
as heterogeneous catalysts [21, 22]. Particularly 
palladium metal is acquiring an interest due to its 
unique catalytic properties and high stability. 

http://creativecommons.org/licenses/by/4.0/
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Palladium nanoparticles have been extensively 
used as a catalyst for many organic reactions that 
are also catalyzed by organometallic palladium 
complexes such as olefin hydrogenation and 
carbon-carbon coupling reactions [23-32]. 
Although numerous phosphine-based ligands 
have been developed for organo-palladium 
compounds for their applications as catalysts for 
many organic reactions, these  ligands have not 
been extensively utilized as stabilizing surfactants 
for palladium nanoparticles. There are few reports 
on the coordination chemistry of palladium 
nanoparticles [33-35]. For example, El-Sayed 
and co-workers investigated the effect of reagents 
and surfactants on the stability of palladium 
nanoparticles during Suzuki coupling reactions. 
Very recently,  Chaudret [36] and Fujihara [37] 
groups reported on the asymmetric catalytic 
applications of chiral phosphine stabilized by 
palladium nanoparticles. For their extensive 
applications, synthesis of palladium nanoparticles 
stabilized by various ligands has become very 
important. In addition, comparative studies on 
the ligand coordination chemistry between metal 
nanoparticles and organometallic compounds 

would provide useful information for the catalytic 
applications of palladium nanoparticles, because 
it is often very difficult to distinguish between 
homogeneous catalysis on molecular species and 
heterogeneous catalysis on metal nanoparticles 
[38-40]. Literature survey showed that no 
work has been published on polydentate ligand 
stabilized palladium nanoparticles,  therefore, in 
our previous work, we reported ligand stabilized 
heterogeneous palladium nanocomposite for 
catalysing Heck reaction [41]. Here, as continuing 
our previous work,  we study macro-cyclic ligand 
of diphenylethanedionedihydrazone to stabilize 
palladium nanoparticle and its application as a 
catalyst for Heck coupling reaction.

EXPERIMENTALS
Materials and methods
General Experiments 

Benzyl, hydrazine hydrate, o-vanillin, cetyl-
trimethylammoniumbromide (CTAB), n-butanol, 
iso-octane, allyl acetates, aryl halides, HPLC grade 
chloroform, dichloromethane and palladium 
acetate were  purchased from Sigma-Aldrich 
(INDIA). Himedia (INDIA),  and Lobo Chemicals 

 
Scheme 1: Synthesis of o-vanilindiphenylethanedionedihydrazone ligand 

  
Scheme 1: Synthesis of o-vanilindiphenylethanedionedihydrazone ligand
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(INDIA) (commercially available from local 
sources) were used as received without further 
purification. Freshly distilled solvents were 
employed for all synthetic purposes. Spectroscopic 
grade solvents were employed for spectral works. 
All other chemicals were of AR grade. The progress 
of every coupling reaction was monitored by TLC. 
Yields refer to the isolated products after column 
chromatographic purification of compounds 
that have a purity of ≥95%. The products of 
Heck reactions were authenticated by matching 
spectroscopic data of the products obtained by us 
with those reported in the literature. 1H and 13C 
NMR spectra were recorded on a JNM-ECS- 300 
NMR spectrometer at 399.78 and 75.03 MHz, 
respectively, and Brukeravance III, 400 MHz, 9.4 
tesla magnet with chemical shifts reported in ppm 
relative to the residual deuterated solvent or the 
internal standard tetramethylsilane. Elemental 
analyses were carried out with a Perkin-Elmer 2400 
Series II C, H, N analyzer. UV-Vis spectra were 
recorded on varian, cary 5000. Melting points were 
determined in an electrically heated apparatus by 
taking the sample in a glass capillary sealed at one 
end.

Diphenylethanedionedihydrazone1a.
10.5 g (50 mmol) of benzil was dissolved in 100 

mL of ethylene glycol and 24.3 mL (500 mmol) of 
hydrazine hydrate was added to it. The resulting 
yellow solution was refluxed for 2 h and then it was 
left in the air. After 16 h a white microcrystalline 
compound 1a separated out which was filtered off 
and washed water followed by diethyl ether. The 
compound was dried in air. Yield 8.9 g (75%); mp 

144 oC. Anal, Calc. for C14H14N4: C, 70.55; H, 5.93; 
N, 23.52 Found: C, 71.06; H, 5.76; N, 23.95%.

o-vanilindiphenylethanedionedihydrazone, (L)1b.
Diphenylethanedionedihydrazone 1a (6.00 

g, 0.03 mol), and o-vanilin (9.13g, 0.06 mol) in  
absolute methanol (60 mL) was refluxed for 4 h, 
and allowed to cool to the room temperature. The 
precipitate formed was filtered off. The filtrate still 
contained the product which was collected by 
reducing the volume of the filtrate to dryness. The 
synthesized crude compound was obtained  in the 
form of a yellow solid 1b (Scheme 1) (5.10 g, 85 %), 
M.P >350 °C;IR (KBr, cm−1) 3009 (br), 2832 (br), 
1602 (s), 1452 (s), 1378 (w), 1252 (s), 1077 (w), 1H 
NMR (CDCl3, 400 MHz) 11.10 (2H s, OH), 8.77 
(2H, s, -CH), 7.90-7.88 (4H, d, H-Arbenzil), 7.44-
7.35 (6H, m, H-Ar benzyl), 6.91-6.72 (6H, m, H-Ar 
O-vanilin) and 3.80 (6H, s, O-Me); 

Synthesis of nano palladium composition (Pd NCs) 
2a.

Two micro-emulsion systems (I and II) 
were prepared for the synthesis of palladium 
nanocomposite consisting of CTAB as surfactant 
and acetate as co-anion using reverse micelle 
method. The micro-emulsion I, containing 
cetyltrimethylammoniumbromide (CTAB) as the 
surfactant, n-butanol as the co-surfactant, iso-
octane as the hydrocarbon phase, conductivity 
water and 0.417 mmol of the ligand (L). Similarly, 
the micro-emulsion II was prepared which 
contained the same constituents as micro emulsion 
I  except that ligand (L), however, it had 0.417 mmol 
of a Pd(OAc)2. The weight fractions of the various 

 
 

 
 
 

Scheme 2: Synthesis of Pd nano-composite (Pd NCs) 
  

Scheme 2: Synthesis of Pd nano-composite (Pd NCs)

Scheme 3: Synthesis of 5a as a Heck reaction product

 
 

 
 

Scheme 3: Synthesis of 5a as a Heck reaction product 
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constituents utilized in these micro-emulsions are: 
16.66% of CTAB, 17.70% of n-butanol, 57.4% of 
isooctane, and 8.1% of the aqueous phase. The two 
micro emulsions were mixed together very slowly 
and stirred overnight using a magnetic stirrer, as 
reported [62]. The pale-red precipitate so-obtained 
was separated from the apolar solvent and the 
surfactant by centrifuging and was thoroughly 
washed with HPLC grade chloroform. The 
compound so-obtained was then air dried and used 
without any further purification (Scheme 2). Yield: 
160 mg, (60%). 

(5.10 g, 85 %), M.P >350 °C; IR (KBr, cm−1) 
3009 (br), 2832 (br), 1602 (s), 1452 (s), 1378 (w), 
1252 (s), 1077 (w), 1H NMR (CDCl3, 400 MHz) 
11.29 (2H s, OH), 8.59 (2H, s, -CH), 7.90-7.88 (4H, 
d, H-Ar benzil), 7.41-7.36 (6H, m, H-Ar benzyl), 
6.91-6.79 (6H, m, H-Ar o-vanilin) and 3.60 (6H, s, 

O-Me);  and 3.54 (6H, s, CH3, Acetate ion). Solid 
state UVevis: λmax (nm, log): 425 (0.25). 

General procedure for Heck reaction 5a.
To the mixture of K2CO3 (138.25mg 1.0 mmol), 

nano palladium (6.8 mg, 0.1 mmol), TBAB 
(161.18mg 0.5 mmol) and NMP (5 mL) was added 
aryl halide 3a (78 mg, 0.5 mmol) and allyl acetate 
4a (100 mg, 1.0 mmol, 2.0 eq.) subsequently. The 
reaction mixture was vigorously stirred under air 
or N2 atmosphere at 120 °C for an appropriate time 
(see Table 1) till the reaction became complete, and 
progress of the reaction was monitored by TLC 
(Scheme 2). After cooling to room temperature 
and concentrating in a vacuum, it was centrifuged 
and filtered. The precipitate was washed three 
times using dichloromethane (5 mL x 3 times). 
The extracted solutions were combined and 

 

 

Fig. 1 
Fig. 1: Comparison of 1H NMR spectrum of ligand (a) and ligand caped Pd NCs (b)
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washed with water for about three times. The crude 
product was purified by chromatography on a short 
silica gel (eluent: petroleum ether/ethyl acetate = 
20:1) to afford 80 mg (91%) of crude product 3aa. 
The precipitate was further washed sufficiently 
with distilled water and HPLC grade chloroform 
then dried, and the palladium nanoparticles were 
recovered. The same catalyst was reused four times 
for Heck coupling reaction. 1H NMR (CDCl3, 399.7 
MHz): δ = 7.41-7.24 (m, 5 H), 6.68 (d, J = 15.6 Hz, 
1 H), 6.34 (dt, J = 15.6, 6.3 Hz, 1 H), 4.74 (d, J = 
6.3 Hz, 2 H), 2.10 (s, 3 H). 13C NMR (CDCl3, 75.4 
MHz): δ = 170.9, 136.2, 134.2, 128.6, 128.1, 126.6, 
123.1, 65.0, 20.8. 

RESULTS AND DISCUSSION
Characterization of palladium nanocomposition

The ligand was synthesized by previously 
reported method with slight modification of the 
reactant and reaction conditions, by  Schiff base 
reaction with benzildihydrazine and o-vanillin, the 
structure was confirmed by FT-IR, and 1H NMR. 
The ligand is then used for the synthesis of palladium 
nanoparticle. In this work, palladium metal was 
stabilized using organic moiety with acetate ion as 

a co-anion forming stable nanocomposite or nano 
coordination compound.The 1H NMR spectrum 
of the free ligand showed signals at 11.10 ppm for 
-OH proton; while a singlet at azomethine proton 
appears at 8.79 ppm and aromatic ring protons 
signals are in the range of 8.00 to 6.85 ppm. In 
the 1H NMR spectrum of the synthesized nano-
composite, using CH3COO- as co-anion, signals 
are observed with the loss of splitting (Fig. 1). 
Some 1H signals are found to be a downfield shift 
as compared to the uncoordinated ligand signals. 
Azomethine proton at 8.59 ppm instead of 8.79 
ppm and methyl proton are found at 3.60 ppm 
compared to 3.80 ppm with loss of splitting, while 
only aromatic protons show a very slight shift in the 
position. Some peaks show downfield shifting with 
slight broadening at azomethine proton, hydroxyl 
proton, methoxy proton signals and aromatic 
proton signals, indicative of a little paramagnetic 
environment which confirm the existence of 
palladium nanoparticles.

The ligand showed characteristic IR bands at 1602 
cm-1is C=N stretching frequencies, 1252 cm-1and 
1077are assigned to O-CH3 stretching frequencies 
(Fig. 2). A broad and sharp IR band at 3009 and 

 

Fig. 2 

 

 

 

 

 

 

 

Fig. 2: FT-IR Spectrum of  ligand and Pd NCs.
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2832 cm-1 are due to aromatic -CH group and 
stretching of -CH3 group, respectively. Hydrogen of 
-OH group is involved in hydrogen bonding with 
adjacent methoxy group, hence, its corresponding 
band was not appeared in the uncoordinated 
ligand. In palladium nanocomposite IR spectrum, 
the -OH group mainly appeared at 3046 cm-1. The 
strong C=N bands and –O-Me bands are shifted 
to 1598 cm-1 and 1248 cm-1, respectively. It is 
interesting to note that in Pd NCs OH band and 

C-O-C bands are weak and shifted to higher energy 
region. The presence of acetate anions in the Pd 
NCs is confirmed by the presence of strong IR band 
at 1212 cm-1 (-COO-). The IR data clearly indicate 
that the palladium ions are completely bound to the 
ligand in the nanocomposite [64].

LPd(OAc)2 (nanocomposite with OAc as the 
co-anion) show polydispersity. The solid-state 
electronic spectrum of the TPA ligand,  (Fig. 3), 
shows two strong bands in the region 176-220 
nm which are assigned to the π-π* transition, a 
characteristic band of the terephthalic acid group. 
A broad but less intense d-d band observed in the 
region 430 nm is the characteristic band due to the 
presence of Pd (II) ion, which is coordinated to 
the TPA ligand [66]. The low energy d-d transition 
suggests approximately square planar geometry for 
palladium (II) nanocomposite. The square planar 
structure of LPd(OAc)2 capped by the terephthalic 
acid group could provide suitable anchoring sites 
on the nano surface.

The formation of palladium nanoparticles 
was confirmed by PXRD diffractogram, (Fig. 
4). All peaks of palladium were observed in the 
diffractogram of 2θ value range 10–80o, indicating 

 
Fig. 3 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 3: Comparison of electronic spectra of ligand and Pd NCs

Fig. 4: EDX spectrum, PXRD spectrum and SEM images of Pd NCs.
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the crystalline nature of palladium nanoparticles. 
The X-ray reflections were indexed to the fcc 
structure of palladium nanocomposite and the 
diffraction peaks observed 2θ values at 40o, 48o, 
59o and 78o respectively representing the (111), 
(200), (220) and (311) Braggs reflection and 
matche with literature JCPDS standard card (#05-
0681) and confirmed the formation of palladium 
nanoparticles with halo shape fcc crystal structure, 
which is also  consistant with the earlier reports. 

The nano-composite was further characterized 
by energy-dispersive spectrometry (EDX, Fig. 4),  
showing that palladium metal atom is covered with 
organic species and also revealed that the hollow 
spheres of Pd NCs composed of the minor amount 
of carbon, oxygen and nitrogen which came from 
the organic ligand and CTAB, respectively.

The Fig. 4(a, b) shows the typical SEM image 
of Pd NCs. It confirms that the palladium 
nanoparticles have irregular spherical shapes. In 

Table 1 
 

Entry 3a 4a Catalyst Temp(0C)  Time (h) Yield of 5a (%)b 
     Air N2 Air N2 
 

1 
 

(3a) 

 
 

(4a) 

 
- 

 
120 

 
8 

 
8 

 
- 

 
- 

 
2  

(3a) 

 
 

(4a) 

 
Pd NCs 

 
120 

 
8 

 
5 

 
92 

(5a) 

 
94 

 
3  

(3b) 

 
 

(4a) 

 
Pd NCs 

 
120 

 
8 

 
6 

 
91 

(5b) 

 
92 

 
4 

 
(3c) 

 
 

(4a) 

 
Pd NCs 

 
120 

 
7 

 
5 

 
84 

(5c) 

 
88 

 
5  

(3d) 

 
 

(4a) 

 
Pd NCs 

 
120 

 
7 

 
7 

 
72 

(5d) 

 
81 

 
6 

       
(3e) 

 
 

(4a) 
 

 
Pd NCs 

 
120 

 
8 

 
5 

 
88 

(5e) 

 
89 
 
 

 
7 

 
(3f) 

 
 

(4a) 

 
Pd NCs 

 
120 

 
8 

 
5 

 
91 
(5f) 

 
93 

 
8 

 
(3a) 

 
(4b) 

 
Pd NCs 

 
120 

 
8 

 
7 

 
55 

(5g) 

 
61 

 
9 

 
(3e) 

(4c)  
Pd NCs 

 
120 

 
8 

 
6 

 
78 

(5h) 

 
81 

 
 

10 
 

(3a) 

 
(4d) 

 
Pd NCs 

 
120 

 
8 

 
8 

 
53 
(5i) 

 
54 

 
 

11 
 

(3h) 

 
 

(4a) 

 
Pd NCs 

 
120 

 
6 

 
5 

 
91 
(5j) 

 
91 

 
12  

(3i) 

 
 

(4a) 

 
Pd NCs 

 
120 

 
7 

 
5 

 
91 

(5k) 

 
93 

 
13 

 
(3j) 

 
 

(4a) 

 
Pd NCs 

 
120 

 
6 

 
5 

 
92 
(5l) 

 
94 

                                              aReaction conditions: K2CO3 (138.25mg 1.0 mmol,) nano palladium (6.8 mg, 0.1 mmol), TBAB (161.18mg 0.5 mmol) and  
                               NMP (5 mL) was added 3a (61 mg, 0.5 mmol) and  4a (100 mg, 1.0 mmol, 2.0 eq.) at 120 °C under N2  and air. bisolated yield. 
 
 

Table 1: Pd NCs catalyzed Heck reaction of allyl acetate 4a with different aryl halides 3a-3j.
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the image the pale colored regions in the central 
parts, in contrast to the dark spot, implies a 
spherical structure. The unchanged contrast 
difference between the center and edge in the 
SEM image of one sphere is obtained when the 
sample grid is rotated by different degrees, further 
support for their spherical structure. The average 
diameter of the spherical structure is about 5 nm. 
The overall result of palladium nanocomposite 
showed that benzildihydrazine ligand serves as a 
good capping agent and provides good stability at 
nano-sized palladium metal atom.   

Heck coupling reaction of aryl halide and allyl 
acetate 

The catalytic activity of Pd nanocomposite has 
been investigated by Heck coupling reaction. The 
Heck cross-coupling reaction was found to be 
highly dependent on the nature of the solvent. As 
reported in the literature, polar aprotic solvents 
tend to give the best results for the Heck coupling 
reaction. The effect of the temperature and type of 
the reaction on the yield of the final product were 
also investigated. We employed several solvents in 
the Heck model reaction. Among evaluated polar 
and non-polar solvents, N-Methyl-2-pyrrolidone 
(NMP) was found to be the most productive 
solvent among the tested polar and nonpolar 
solvents. The most productive solvent (Table 2, 
entry 1) which is consistent with the previous 
report. The solvents such as MeOH, EtOH, AcOH 
and dioxane produced a moderate conversion, 
(Table 2). Toluene a non-polar solvent yielded a 
very poor conversion (Table 2, entry 7). 

The effect of a base on the catalytic performance 
of this system was investigated by taking the model 
reaction in different bases. Among the several 
organic and inorganic bases, potassium carbonate 

(K2CO3) was found to be the most effective base; 
it has the highest conversion rate, therefore, it 
was chosen as the preferred base for the reactions 
(Table 3, entry 1). The inorganic bases were less 
effective and afforded moderate yield for the 
coupled products (Table 3). The low conversion 
was achieved when a base, triethylamine (Et3N) 
was used (Table 3, entry 3). This may be due in 
part to blocking of free coordination sites on the 
palladium center.[47,48] 

Further, the studies carried out to find the 
influence of the different amounts of catalyst, 
which in turn, vary the product yield. The results 
indicate that 0.5 mmol/L catalyst offered below 
50% yield and a very small quantity of the catalyst 
say 0.001mmol/L produces a moderately good 
yield. Therefore, it is concluded that intermediate 
quantity says about 0.01 mmol/L loading of 
the catalyst may lead to the high product yield. 
Reactions occur under N2 atmosphere as well as 
air, but typically high yield was observed under N2 
atmosphere than air. The amount of variation in 

Table 2 
Entry Solvent Yieldc 

1 NMPb 92, 94b 
2 MeCNb 85, 89b 
3 Acetone 80 
4 MeOH Trace 
5 Ethanol >20 
6 Dioxane >20 
7 Toluene  60 
8 MeOH/H2O (6:4)b 58, >30b 
9 EtOH/H2O (6:4)b 68, >50b 
10 DMF 80 
11 DMSO 80 

 

aReaction conditions: K2CO3 (138.25mg 1.0 mmol, 2.0 eq.) nano palladium (6.8 mg, 0.1mmol), TBAB (161.18mg 0.5 mmol) and solvent (5 mL) was added 
bromobenzene 4a (61 mg, 0.5 mmol) and allyl acetate 3a (100 mg, 1.0 mmol, 2.0 eq) at 120 °C under N2. bUnder N2 and air. cisolated yield. 
 

aReaction conditions: K2CO3 (138.25mg 1.0 mmol, 2.0 eq.) nano palla-
dium (6.8 mg, 0.1mmol), TBAB (161.18mg 0.5 mmol) and solvent (5 
mL) was added bromobenzene 4a (61 mg, 0.5 mmol) and allyl acetate 
3a (100 mg, 1.0 mmol, 2.0 eq) at 120 °C under N2. 

bUnder N2 and air. 
cisolated yield.

 
 
 
 
 
 

Table 3 
 

Entry Solvent Base Yieldc 
1 NMP K2CO3

b 92, 94b 
2 NMP CH3COONab 80, 63b 
3 NMP NEt3

b >20 
4 NMP NaHCO3

b 61, 60 
5 NMP KOHb 67, >30b 
6 NMP NaOHb 60, >30b 
7 MeCN K2CO3 >30 
8 Acetone K2CO3 65 
9 MeCN CH3COONa 72 
10 Acetone CH3COONa 63 

                                                                                    aReaction conditions: Base (138.25mg 1.0 mmol, 2.0 eq.) nano palladium (6.8 mg, 0.1mmol),  
                                                      TBAB (161.18mg 0.5 mmol) and Solvent (5 mL) was added bromobenzene 4a (61 mg, 0.5 mmol) 
                                                      and allyl acetate 3a (100 mg, 1.0 mmol, 2.0 eq.) at 120 °C under N2. bUnder N2 and air. cisolated yield. 

 

Table 3: Optimization of the base with selective solvent

Table 2: Optimization of the solvent
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yield is 10 to 20 % for most of the reactions. Now 
with optimized reaction conditions, the scope of 
allyl acetate has been investigated with different 
aryl halides employing 2% mol of Pd NCs in NMP 
at 120 °C under N2 atmosphere and the results are 
collected in Table 1.

The scope of the reaction was subsequently 
explored using various allyl acetate (4a-4d) 
with appropriate aryl halides (3a-3j), the 
excellent isolated yield of arylation product 
(5a-5l) was obtained with 2% mol of palladium 
nanocomposite in about 5 to 8hr. Substituted aryl 
halides with electron-withdrawing substituents 
worked equally well as those with electron-
donating substituents, giving arylation product 
like 5a, 5b, 5f (Table 1). In particular, p-methyl 
bromobenzene 4b, 4-bromobenzonitrile 4f with 
allyl acetate resulted in higher yield of the product 
5b and 5f, respectively (Table 1). The reaction of 
o-methyl bromobenzene 4c with terminal alkene 
gives quite less yield under optimized condition; 
the reason for this is the steric factor which restricts 
the reaction.  The aryl iodides found to be more 
reactive than the corresponding aryl bromides 
and the reaction appeared to be suggesting with 
aryl chloride in the present pd-catalyzed reaction. 
The reductive coupling reaction with aryl iodides 
was completed in 6h and produced higher yield 
with just 2 mol % of the Pd nanocomposite 
catalyst. Thus, m-corbanyliodobenzene 3g reacted 
with allyl acetate 4a forming 5j with 91% yield. 
Similarly, 3-iodobenzonitrile 3h reacted with allyl 
acetate 4a to afford the substituted aryl product 5k 
in excellent yield. Without substituted aryl iodide, 
which has no other substitutions, gave highest 94% 
yield under the similar condition. An extremely 
efficient reactions were observed in the case of 4b, 
4e and 4f producing their corresponding products 
5b, 5e and  5f being obtained in high yield after 
6h, 5h and 5h respectively (92%, 89%, 93% yield 
entries). The overall reactions indicate that 
palladium nanocomposite is an efficient catalyst 
for Heck coupling reaction and also it exhibits a 
wide range of functional group tolerance for the 
catalytic activity. 

CONCLUSION
In summary, we report the synthesis of 

palladium nanoparticle which is stabilized by 
a ligand.  This product showed highly effective 
catalytic character in  Heck reactions. It is 
demonstrated that the ligand serves as a capping 

agent for stabilization and also ligand was 
completely wrapping a palladium metal in nano 
size as well as serving as a stabilizer for keeping 
the Pd nanocomposite from particle coalescence 
via a weak coordination bond between ligand and 
metal nanoparticles. This catalyst was successfully 
employed as a catalyst for Heck cross-coupling 
reactions. The catalyst is more efficient with 
respect to the loading of catalyst, the yield of 
the Heck reaction product and a wider range of 
functional group tolerance. The main advantages 
of the present catalyst are the easy synthesis, 
phosphine free conditions as well as convenient 
handling due to insensitivity to air and moisture 
which allows the reactions to be conducted in the 
non-dry solvent under air.
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