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Nano-structured copper oxides were successfully prepared through 
direct calcination of 1D ladder-like metal-organic framework [Cu2(btec)
(2,2’-bipy)2]∞, (btec = 1,2,4,5-benzenetetracarboxylate and 2,2’-bipy 
= 2,2’-bipyridine) and porous coordination polymer [Cu(BDC)(bipy)]
(BDCH2), (BDC = 1,4-benzenedicarboxylate; bipy = 4,4’-bipyridine). The 
nanostructure of the as-synthesized samples was characterized by X-ray 
powder diffraction (PXRD), Energy dispersive X-ray microanalysis (EDX) 
and scanning electron microscopy (SEM). Different reaction conditions 
were discussed. This study demonstrates the metal-organic frameworks 
may be adequate precursors for the preparation of nanoscale materials 
with different and remarkable morphologies.
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INTRODUCTION 
Metal-organic frameworks (MOFs) provide 

an intriguing way to design hybrid materials from 
organic linkers and metal ions and have attracted 
considerable attention because of their glamorous 
structures and potential applications in materials 
science and industrial technologies [1–4] including 
gas storage [5–7], separation [8–10], catalysis [11–
13], magnetic resonance imaging (MRI) [14–17] 
and drug delivery  [18–21]. Meanwhile, powders 
constituted by metal oxides are suitable products 
for the inorganic chemical industries. They find 
application in the fields of adsorption technology 
[22,23], heterogeneous catalysis [24], pigments 
technology [25] and as precursors for sintered 
ceramics [26]. Cupric oxide (CuO) is one of the most 
popular p-type semiconductor oxides, with a narrow 
band gap of 1.2 eV, that has been widely studied 
for a number of remarkable properties that can be 
used as heterogeneous catalysts in many significant 
chemical processes [24,27], as gas sensors [28,29], as 
a cathode material for electrochemical applications 
[30,31] and dye-sensitized solar cells [32,33]. So 

far, various nanostructured CuO crystals have been 
successfully synthesized through various methods 
such as sonochemical methods [34,35], double-jet 
precipitation methods [36,37], templating methods 
[38], precipitation [39], and wet-chemical methods 
[40,41]. The present work describes a facile route 
for preparation of CuO nanostructures by direct 
pyrolysis of two different Cu(II) metal-organic 
frameworks, [Cu2(btec)(2,2’-bipy)2]∞ (1), and 
[Cu(BDC)(bipy)](BDCH2) (2), as precursors under 
air atmosphere. The resulting nanomaterials were 
characterized by means of powder X-ray diffraction 
(PXRD), scanning electron microscopy (SEM), and 
energy dispersive X-ray microanalysis (EDX).

MATERIALS AND METHODS 
All the ligands and transition metal salts were 

obtained commercially and used as received. X-ray 
powder diffraction patterns were measured using a 
Philips PW1800 powder diffractometer for Cu-Kα (λ 
= 0.17887 Å) with a scan speed of 1 s/step and a step 
size of 0.04°. The samples were characterized with 
a scanning electron microscope (SEM) (Hitachi 
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S4160 and Philips XL30) with gold coating. 
Energy-dispersive X-ray analysis (EDX) was used 
to fulfill elemental microanalysis with a Philips 
XL30 operating at 17.0 kV.

Synthesis of [Cu2(btec)(2,2’-bipy)2]∞ (1)
[Cu2(btec)(2,2’-bipy)2]∞ (1) was synthesized by the 

method according to the literature [42]. In a typical 
synthesis of 1, a mixture of Cu(OAc)2·2H2O, H4btec, 
NaOH, 2,2’-bipy, and H2O with the molar ratio of 
0.6:0.3:1.2:0.6:399.6 was stirred for 30 min, sealed in a 
Teflon-lined stainless steel autoclave and heated at 120 
°C for 2 days. After cooling to room temperature, the 
dark blue powder product of 1 was collected.

Synthesis of [Cu(BDC)(bipy)](BDCH2) (2)  
Compound [Cu(BDC)(bipy)](BDCH2) (2) 

was prepared using the reported method [43]. A 
mixture of Cu(NO3) 2. 2.5H2O (0.725 g, 0.3 mmol), 
BDCH2 (0.05 g, 0.3 mmol), bipy (0.047 g, 0.3 

mmol), and H2O (3 ml) was heated in a Teflon-
lined autoclave at 150 °C for 2 days and then cooled 
to room temperature. The blue powder product 
was filtered, washed with H2O and ethanol, and air-
dried to give [Cu(BDC)(bipy)](BDCH2).

Synthesis of copper oxide nanoparticles 
The precursors 1 and 2 were placed in a ceramic 

boat separately and calcinated in the furnace at 500 
°C for 4 h under air atmosphere. After cooling at 
room temperature, black products were collected. 
Calcination at other temperatures (400 and 600 °C) 
followed the same process above.

RESULTS AND DISCUSSION
The structure of compounds [Cu2(btec)(2,2’-

bipy)2]∞ (1) and [Cu(BDC)(bipy)](BDCH2) (2) 

Fig. 1.  X-ray powder pattern of  [Cu2(btec)(2,2’-bipy)2]∞ MOF. 
(a) The simulated pattern of single crystal X-ray data and (b) 

experimental pattern of as-synthesized MOF.

Fig. 2. Powder X-ray diffraction patterns for [Cu(BDC)(bipy)]
(BDCH2) analogs; (a) the original form, (b) as synthesized.

Fig. 4. PXRD pattern resulting from calcination of the [Cu(BDC)
(bipy)](BDCH2) MOF at 500 °C.

Fig.  3. PXRD pattern of as-synthesized CuO product by in-situ 
calcination of [Cu2(btec)(2,2’-bipy)2]∞ at 500 °C for 4 h.
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were previously analyzed and reported [42,43]. 
The simulated diffraction pattern of the reflections 
of the single crystal diffraction agrees with the 
experimental PXRD pattern of the formed powder 
MOFs, as shown in Figs. 1 and 2, respectively. 
In this study, CuO nanostructures were simply 
synthesized by direct calcination of the Cu-
MOFs at 500 °C under air atmosphere without 
using any additional reducing agent or template. 
The crystalline structures and phase purity of 
as-synthesized products were first examined by 
PXRD with the results shown in Figs. 3 and 4, 
respectively. Fig. 3 shows the crystal structure 

of product resulted from 1 is corresponding to 
copper(II) oxide (CuO) (Tenorite; S.G.: C2/c; cell 
parameters: a = 4.685; b = 3.23; c = 5.132; β = 99.52; 
JCPDS file no. 41-0254). No peaks of other phases 
can be found, indicating that a pure product was 
obtained. Also, the peak positions appeared from 
2 corresponding to a mixture of Cu2O (Cuprite; 
S.G.: Pn3m; with lattice constant a = 4.269; JCPDS 
file no. 05-0667) and CuO (Tenorite; JCPDS file 
no. 41-0254) in major phase, as shown in Fig. 4. 
Furthermore, the EDX spectra at 600 °C in Figs. 5 
and 6 demonstrate that copper oxide is generated. 
The morphology and sizes of as-synthesized 

Fig. 5. EDX spectrum of the as-synthesized product by calcination of [Cu2(btec)(2,2’-bipy)2]∞ MOF at 600 °C for 4 h in the air.

Fig. 6. EDX spectrum of as-synthesized products by calcination of the [Cu(BDC)(bipy)](BDCH2) at 600 °C for 4 h.
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Fig. 7. SEM photographs of  CuO nanostructure produced by calcination of [Cu2(btec)(2,2’-bipy)2]∞ MOF for 4 h in the air, (a-b) at 400, 
(c-d) 500, and (e-f) 600 °C, respectively.

Fig. 8. Surface morphology (SEM image) of as-prepared [Cu(BDC)(bipy)](BDCH2) MOF after calcination at 400 (a-b), 500 (c-d), and 
600 °C (e-f), respectively.
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Fig. 9. Particle size histogram of CuO nanoparticles for [Cu2(btec)(2,2’-bipy)2]∞ MOF at 400 (a), 500 (b) and 600 °C (c).

Fig. 10. Particle size histogram of CuO nanoparticles for [Cu(BDC)(bipy)](BDCH2) MOF at 400 (a), 500 (b) and 600 °C (c).

copper oxide products were further characterized 
by SEM. Reaction conditions have a large effect 
on the final products. To investigate the role of 
reaction temperature on the final products during 
calcination of the Cu-MOFs under air atmosphere, 
we further studied the morphology and particle size 
of the final products by calcination of the Cu-MOFs 
at different reaction temperatures varying from 400 
to 600 °C for 4 h, (Figs. 7-8). So, we can see that with 
the variation of reaction temperature, copper oxide 
nanoparticles can be generated, but with different 
morphologies. As shown from histogram in Fig. 9 
(a-c), the particles size was obtained 65, 140, and 65 
nm, respectively, at 400, 500, and 600 °C for 1, and 
the formed nanoparticles from 2 have a diameter 
about 100, 45 and 120 nm at 400, 500 and 600 °C, 
respectively (Fig. 10 (a-c)).

CONCLUSION 
In summary, we have explained the successful 

preparation of copper oxide nanoparticles by direct 
calcination of the 1D ladder-like [Cu2(btec)(2,2’-
bipy)2]∞ metal-organic framework and porous 
coordination polymer  [Cu(BDC)(bipy)](BDCH2) 
under air atmosphere. Calcination temperature 
has a great effect on the size and shape of the final 
products. The variation of reaction temperature 

from 400 to 600 °C led to the different particle sizes 
and morphologies of copper oxide nanoparticles. 
This process builds a direct relation between 
metal-carboxylate MOF crystals and metal oxide 
nanostructures and further opens a new application 
field for MOFs. 
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