@article { author = {Fattahi, Farnaz Sadat and Zamani, Tahereh}, title = {Synthesis of Polylactic Acid Nanoparticles for the Novel Biomedical Applications: A Scientific Perspective}, journal = {Nanochemistry Research}, volume = {5}, number = {1}, pages = {1-13}, year = {2020}, publisher = {Iranian Chemical Society}, issn = {2538-4279}, eissn = {2423-818X}, doi = {10.22036/ncr.2020.01.001}, abstract = {Nanotechnology is an extended investigation field, based on the materials including a size ranging 1-1000 nm.. Numerous polymers are used for the production of nanoparticles. Polylactic acid (PLA), its streo-isomers, such as PLLA and PLDA, and  its famous co-polymer polylactic-co-glycolic (PLGA) are among the biocompatible synthetic polymers widely used to produce nanoparticles. These chmeicals are of particular impotance, beacuse they are biocompatible and biodegradable, despite their synthetic nature. A biodegradable polymer is a polymer which is submitted to the degrading procedures in-vivo. The polymeric nanoparticles commonly propose an extended surface area, high drug loading capability, feasibility of functionalization with ligands, controlled drug releasing capacity, minimal toxicity, biocompatibility, storage stability, and flexibility in the management methods. Furthermore, these nanostructure materials signify unique groundbreaking non-invasive methods for delivery structures in biomedical fields such as wound dressing materials, tissue scaffolds, gene-delivery materials, and drug delivery systems for cancer chemo-therapy.}, keywords = {Polylactic Acid,Nanoparticle,Synthesis,Emulsification evaporation,Biomedical}, url = {http://www.nanochemres.org/article_110491.html}, eprint = {http://www.nanochemres.org/article_110491_13d8841bc218dedbb82ce8d84317653c.pdf} }