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ABSTRAC T

In this study, hematite (α-Fe2O3) nanoparticles were synthesized via 
solvothermal route and their photocatalytic activity for the degradation 
of methyl orange (MO) under visible light was studied. The iron 
precursors solution were prepared by dissolving Fe(NO3)3∙9H2O or 
Fe2(SO4)3 in an acetic acid glacial/ethanol (9:1 v/v) mixture followed by 
the addition of polyvinylpyrrolidone (PVP) and urea. The as-prepared 
α-Fe2O3 nanoparticles were characterized by X-ray diffraction (XRD), 
vibrating sample magnetometer (VSM), Brunauer-Emmett-Teller 
(BET), and transmission electron microscope (TEM) techniques. The 
characterization results confirmed that the α-Fe2O3 nanoparticles were 
successfully prepared which had ferromagnetic behavior and micropores 
with quasi-spherical shapes. The effect of initial pH solution, contact time, 
and photocatalyst dosage on the photocatalytic degradation of MO was 
investigated. The photocatalytic results showed the degradation efficiency 
of 84.3% and 96.8% for MO, after 120 min of visible light irradiation. 
The photocatalytic examinations illustrated that the degradation of MO 
follows Langmuir kinetic model with the rate constant (k) of 0.01374 and 
0.02689 min-1, respectively. 
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INTRODUCTION
In recent years, the use of different metal oxide 

nanoparticles as photocatalysts is a common route 
for the degradation of various organic dyes such as 
direct black 112 [1], congo red [2], reactive blue 21 
[3], and methyl orange [4]. Among different metal 
oxides, iron oxide hold significant importance. 
It has three main phases: FeO, Fe2O3 and Fe3O4. 
These phases are known as crucial materials due 
to their unique properties and application [5-9]. 
Hematite (α-Fe2O3) stands out as an excellent iron 
oxide nanoparticles due to its stability, affordability, 
biocompatibility, eco-friendly properties, and 
remarkable photocatalytic ability to degrade 

various organic dyes [10-21]. Today, in all countries, 
due to the increase in pollution and also incredibly 
polluted different water sources, the availability of 
drinking water is limited and has become one of the 
major problems [10]. Various heavy meal oxides 
and organic dyes are released to the environment 
due to industrial activities, among which dyes 
are the most common source of pollution in 
wastewater [10-32]. Generally, the organic dyes 
have aromatic azo complex structure characterized 
by their high stability, water solubility, tendency to 
inhibit sunlight penetration, non-biodegradability, 
high toxicity, and also being potentially mutagenic 
and carcinogenic [10-21]. Methyl orange (MO) 
as anionic dye (Scheme 1) is used in textile and 
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printing [13]. Usually, the factories wastewaters 
contain 10-20% of residual organic dyes usage 
[17]. Results showed that a small amount of dyes in 
water can affect its transparency, oxygen solubility, 
and hence preventing photosynthesis [13]. Thus, 
the removal of dyes from industrial wastewaters 
has drawn great attention from many researchers 
[22-32]. Recently, photodegradation of organic 
dyes by using metal oxide semiconductors such 
as CuO [33], Gd2O3 [34], SrFe12O19 [35-37], CeO2 
[38,39], NiFe2O4 [40], CoFe2O4 [41], and Fe2O3 [10-
21] is widely explored as a highly economical and 
ecofriendly technique. For example, in their study, 
Araujo et al. [16] reported the photodegradation 
of methylene blue (MB) and crystal violet (CV) 
using α-Fe2O3 nanofibers under visible light, which 
showed the maximum degradations of 66% and 
92% for MB and CV, respectively. Mesoporous iron 
oxide nanowires, as prepared by Gandha et al. [20], 
demonstrated an efficient methyl orange (MO) 
and rhodamine B (RhB) photodegradation within 
90 min irradiation. In another study, Gupta et al. 
[14] synthesized coral-like α-Fe2O3 nanoparticles 
for methylene blue (MB), bromo green (BG), 
methyl orange (MO) and methyl red (MR) 
photodegradation. Taghavi Fardood et al. [42] 
synthesized α-Fe2O3 (hematite) nanoparticles using 
Arabic gum (AG) as a biotemplate source by the sol-
gel method and used them as a new photocatalyst 
for the degradation of the Congo red dye. Khalaji 
et al. [18] prepared α-Fe2O3 nanoparticles by 
wet chemical precipitation technique for the 
photodegradation of methyl orange (MO) 
under visible light irradiation. Keerthana et 
al. [17] applied pure α-Fe2O3 nanoparticles in 
the photodegradation of methylene blue (MB). 
Therefore, these reports have confirmed that the 
great interest in the preparation of different shapes 
of α-Fe2O3 nanoparticles used as photocatalysts 
for various dyes degradation because of their 
efficiency and reusability [10-21]. However, the 
agglomeration of α-Fe2O3 nanoparticles during 
the synthesis process is a disadvantage that may 
increase their final cost [16].

In this work, we synthesized α-Fe2O3 

nanoparticles using hydrothermal method for 
application in the photocatalytic degradation of 
and MO dye under visible light irradiation.

EXPERIMENTAL
Material and methods

Fe(NO3)3∙9H2O, Fe2(SO4)3, polyvinyl 
pyrrolidone (PVP), urea, glacial acetic acid, 
ethanol, and methyl orange (MO) were purchased 
from Merck and Aldrich and used without further 
purification in the synthesis of hematite (α-Fe2O3) 
nanoparticles. The crystalline structure of hematite 
(α-Fe2O3) nanoparticles was studied by X-ray 
Diffraction (XRD-6000, Shimadzu) using CuKα 
radiation source (λ=1.5404 Å), from 10-70°. The 
morphology of hematite (α-Fe2O3) nanoparticles 
was investigated using a JEOL 2011 transmission 
electron microscope (TEM) with an accelerating 
voltage of 200 kV. Magnetic property was 
performed using a vibrating-sample magnetometer 
(VSM). The UV-Vis spectrum was done using a 
Perkin-Elmer spectrophotometer. A 300 W xenon 
lamp with a 420 nm cutoff filter was employed 
as a visible light source. Brunauer-Emmett-
Teller (BET) analysis (N2 adsorption-desorption 
isotherms) were measured at 77 K in Gemini series 
Micrometritics 2360 instrument.

Preparation of hematite (α-Fe2O3) nanoparticles
In this work, hematite (α-Fe2O3) nanoparticles 

were synthesized using the hydrothermal 
technique. Initially, 2 g of Fe(NO3)3∙9H2O or 
Fe2(SO4)3 was dissolved in 50 mL of ethanol/ glacial 
acetic acid (45:5 v/v) under magnetic stirring for 
10 min. Then, 2 g of PVP was dissolved in 20 mL 
of distilled water and the mixture was stirred for 
1.5 h at 80 °C followed by adding 2 g urea. Finally, 
the solution was transferred into a Teflon-lined 
stainless steel autoclave and heated at 150 °C for 24 
h. The resulting dark-red precipitates was separated 
using centrifugation, washed, dried, and finally 
calcined at 600 °C for 3 h.

Photocatalytic activity studies
The photocatalytic activity of the as-prepared 

hematite (α-Fe2O3) nanoparticles was studied at 
room temperature using the photodegradation 
of methyl orange (MO) dye under visible light 
irradiation at a pH range of 2-7. For each test, a 
suitable amount of α-Fe2O3 nanoparticles (0.005, 
0.01 and 0.02 g) as photocatalyst was dispersed 
in 50 mL of MO solution (20 ppm). The solution 
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was kept about 0.5 h under stirring in the dark 
to ensure the adsorption/desorption equilibrium 
between MO molecules and the surface of α-Fe2O3 
nanoparticles. After that, the solution was exposed 
to visible light for about 90 min. At given times, 
5 mL of the mixture was collected, centrifuged, 
and then its absorption was detected by UV-Vis 
spectroscopy at 465 nm. The UV-Vis spectrum of 
MO dye solution is shown in Fig. 1.

RESULTS AND DISCUSSION
Characterization of α-Fe2O3 nanoparticles

The XRD patterns of the as-prepared α-Fe2O3 
nanoparticles are shown in Fig. 2. It can be seen 
that many peaks are observed at 2θ values of 
about 24.2°, 33.1°, 35.7°, 49.5°, 54.1°, 57.6°, 62.5° 
and 64.1° corresponding to the crystal planes of 
(012), (104), (110), (113), (024), (116), (018), (214), 
and (300), respectively, which match well with 
the rhombohedral structure of hematite α-Fe2O3 
nanoparticles (JCPDS No. 33-0664) [5,9,10,15]. 
Additionally, the XRD patterns show well 
crystalline samples (high intensity peaks) without 
any impurity peaks, confirming the high purity of 
the synthesized α-Fe2O3 nanoparticles. The average 
crystalline sizes of 35 and 23 nm were calculated for 
the as-synthesized α-Fe2O3 nanoparticles prepared 
from Fe(NO3)3∙9H2O, and Fe2(SO4)3, respectively, 
by Scherrer equation, D = 0.94λ/βcosθ [19,42,43] 
from the peak observed at 35.7° (104), where D is 
the average crystalline size (nm), β is the (FWHM), 
λ is the X-ray wavelength source CuKα (1.54 Å), 

and the θ is the Bragge angle.
Fig. 3 show the M-H hysteresis loops of the 

as-prepared α-Fe2O3 nanoparticles and exhibited 
a magnetic saturation (Ms) of 3.022 and 2.147 
emu/g with coercivity (Hc) of 886 and 912 Oe, 
respectively [9,16,18,19]. The Ms value of α-Fe2O3 
nanoparticles prepared from Fe2(SO4)3 is more than 
the Ms value of α-Fe2O3 nanoparticles prepared 
from Fe(NO3)3∙9H2O, since generally magnetic 
properties depend upon the synthesis technique, 
morphology, and size of particles [9,20,44]. 

The TEM images of the as-prepared α-Fe2O3 
nanoparticles are illustrated in Fig. 4. It can be 
seen that their morphologies are found to be nearly 
spherical in shape with different sizes. However, 
the average size of α-Fe2O3 nanoparticles prepared 
from Fe2(SO4)3 is smaller than the size of α-Fe2O3 
nanoparticles prepared from Fe(NO3)3∙9H2O. 
In addition, the particles prepared were highly 
agglomerated and a high crystallinity emerged [9]. 

Usually, the surface of transition metal oxides 
is exposed to hydroxyl groups that can act as a 
functional group for them [11]. Then, the charge 
surface of transition metal oxides depends on the 
pH solution. The point of zero charge (PZC) of the 
transition metal oxides usually does not depend 
on the crystalline shapes and sizes and for α-Fe2O3 
nanoparticles calculated at about 8-9; however, it 
is very sensitive to any impurities in the surface of 
materials as well as temperature [11]. The surface of 
α-Fe2O3 nanoparticles has an overall positive charge 
due to the formation of FeOH2

+ at a pH below 
PZC and is negative charge due to the formation 
of FeO- at a pH higher than PZC [11]. The Zeta 
potential of the α-Fe2O3 nanoparticles measured in 
aqueous solution is shown in Fig. 5. The iso-electric 
point is 8.19 for α-Fe2O3 nanoparticles prepared 
from Fe(NO3)3∙9H2O, and 8.434 for α-Fe2O3 
nanoparticles prepared from Fe2(SO4)3.

Specific surface area and pore diameter 
distribution of the as-prepared α-Fe2O3 nanoparticles 
were analyzed by N2 adsorption-desorption 
isotherms and were given in Fig. 6. As shown in 
Fig. 6, the N2 adsorption-desorption curves similar 
to type III and the hysteresis loops (H3) are at P/
Po = 0.27, indicating micropores structure for the 
samples. The surface area of α-Fe2O3 nanoparticles 
prepared from Fe(NO3)3∙9H2O and Fe2(SO4)3 are 
3.1278 and 7.4525 m2/g, respectively, confirming 
the smaller size of α-Fe2O3 nanoparticles prepared 
from Fe2(SO4)3 than Fe(NO3)3∙9H2O.  Table 1 
presents the BET data for α-Fe2O3 nanoparticles.

 

 
Fig. 1. UV-Vis spectrum of MO dye solution 
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Fig. 2. XRD patterns of α-Fe2O3 prepared from a) Fe(NO3)3∙9H2O, and b) Fe2(SO4)3  
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Photocatalytic methyl orange (MO) degradation
Finally, the as-prepared α-Fe2O3 nanoparticles 

have been used for the photocatalytic degradation 
of methyl orange (MO) under the visible light 
irradiation. Initial pH solution is one of the best 
parameters for the photodegradation of MO using 
different photocatalyst [13,19,45]. According to the 
zeta potential results (Fig. 5), the surface partial 
charge of as-synthesized α-Fe2O3 nanoparticles 
is positive at pH solution below ≈8.3. Due to the 
greater adsorption capacity of MO molecules as 
anionic dye on the positively charged catalyst, 
resulting in a best contact between photogenerated 
radical species and surface of the catalyst and 
increasing the rate of photodegradation of MO at 
low pH (Fig. 7).

Fig. 8 illustrates the effect of irradiation time on 
the degradation percentage of MO in the presence 
of 0.005, 0.01 and 0.02 g of photocatalysts at a 
pH solution of 3. The degradation percentage of 

MO was measured using the following equation, 
where Co and Ct are the initial and given time 
concentration of MO, respectively.

Degradation percentage (%) = {(Co-Ct)/Co} × 
100

Firstly, the results in Fig. 8 demonstrate 
that the as-synthesized α-Fe2O3 nanoparticles 
prepared from Fe(NO3)3∙9H2O and Fe2(SO4)3 
degraded about 84.3% and 96.8% of MO after 
120 min of visible light irradiation, predicting the 
high efficiency of the samples, similar to previous 
reports [13,14,18-20,46]. The degradation speed 
of MO is very fast at a time range of 5-30 min 
and after that the degradation becomes slower 
due the decrease of MO concentration and also 
the obstruction of active site surface of the as-
synthesized α-Fe2O3 nanoparticles. In addition, 
the degradation efficiency of MO increases by 
rising the photocatalyst dose from 0.005 to 0.02 
g. We found that the final solution was colorless 

 

 

 
Fig. 5. Zeta potential of α-Fe2O3 prepared from a) Fe(NO3)3∙9H2O, and b) Fe2(SO4)3 
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Fig. 4. TEM images of α-Fe2O3 prepared from a) Fe(NO3)3∙9H2O, and b) Fe2(SO4)3 
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Fig. 6. N2 adsorption-desorption isotherms and pore size distribution of α-Fe2O3 

prepared from a) Fe(NO3)3∙9H2O, and b) Fe2(SO4)3 
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Fig. 7. Effect of pH solution on degradation percentage of MO in presence of 0.02 g 
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and the reddish brown solid produced from the 
degradation of MO was deposited on the surface 
of α-Fe2O3 nanoparticles as the photocatalyst of the 
bottom of Becker and was completely removed by 
the external magnetic field [46]. 

Finally, photocatalytic degradation reaction of 
MO using α-Fe2O3 nanoparticles prepared from 
Fe(NO3)3∙9H2O and Fe2(SO4)3 follows Langmuir 
kinetic model (Fig. 9) using the following equation 
[46], where Co represents the initial concentration 
and Ct denotes the concentration at time t, and k is 
the rate constant of the reaction.

ln (Co/Ct) = kt
The rate constant (k) of photocatalytic 

degradation reaction of MO can be calculated by the 
slope of fitting curves ln (Co/Ct) versus time and are 
0.01374 and 0.02689 min-1, respectively, for α-Fe2O3 
nanoparticles prepared from Fe(NO3)3∙9H2O 
and Fe2(SO4)3. These results predicted that the 
photodegradation of the as-prepared α-Fe2O3 
nanoparticles are higher than that of other forms 
of α-Fe2O3 nanoparticles [46] and is equal to that of 
other forms of α-Fe2O3 nanoparticles [18,19].

CONCLUSIONS
Summary, α-Fe2O3 nanoparticles were 

synthesized, characterized and used as a new 
catalyst for the photodegradation of methyl 
orange (MO) dye under visible light irradiation. 
The photodegradation results demonstrated the 
degradation efficiency of 84.3% and 96.8% for MO, 
after 120 min of visible light irradiation at an initial 

 
Fig. 9. Kinetic curves of photocatalytic degradation reaction of MO using α-Fe2O3 

nanoparticles prepared from a) Fe(NO3)3∙9H2O, and b) Fe2(SO4)3 

 

Fig. 9. Kinetic curves of photocatalytic degradation reaction of MO using α-Fe2O3 nanoparticles prepared from a) Fe(NO3)3∙9H2O, and 
b) Fe2(SO4)3

pH solution of 3. These results introduce the as-
prepared α-Fe2O3 nanoparticles as a suitable and 
new candidate photocatalyst for the degradation of 
other organic dyes.
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