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In this work, α Fe2O3 nanoparticles were prepared by sonochemical assisted 
method along with calcination at two different temperatures 500 and 700°C for 
3h. The α Fe2O3 nanoparticles were characterized by FT IR, XRD, VSM and TEM. 
All results show that the as prepared α Fe2O3 nanoparticles are of high purity 
with ferromagnetic behavior, uniform distribution, and low agglomeration. In 
addition, photocatalytic degradation of bisphenol A (BPA) was studied by α 
Fe2O3 nanoparticles at the presence of H2O2 as an electron trap. Photocatalytic 
results indicate that 98% and 90% of BPA with the initial concentration of 25 
mg/L in the solution were degraded using 0.02 g α Fe2O3 nanoparticles within 
330 min under the visible light irradiation.
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INTRODUCTION
Water pollution is considered one of the most 

pressing environmental problems in the world today. 
Industrial wastewater discharges contain hazardous 
organic natural and synthetic dyes that are highly 
soluble, stable,  and non-biodegradable, and they 
cause serious damage to human and biological life 
forms [1]. Therefore, it is urgent and necessary to 
design an efficient, simple, low-cost, and eco-friendly 
technique for the removal of organic dyes from 
wastewater before their discharge in the environment. 
Until now, numerous techniques, both physical and 
chemical, have been developed and used for this 
purpose [2,3]. However, physical techniques often 
cannot completely remove organic dyes, proving 
expensive and potentially resulting in the secondary 
pollution that requires additional arrangement to 
remove the byproducts [4].  In recent years, advanced 
oxidation processes (AOP) have been applied for the 
complete removal of organic dyes from wastewaters 
[5-7]. They are based on photocatalytic degradation 
using different transition metal oxides such as 
Fe2O3, Co3O4, TiO2, ZnO, MgFe2O4 [8-12] and 

different Fe3O4 nanocomposites [13-17]. Among 
them, hematite (α-Fe2O3) stands out as one the 
most promising options. It is an environmentally 
friendly semiconductor (n-type) with narrow band 
gap (Eg = 2.1 eV) that promotes the utilization of 
visible light in the degradation process and makes 
α-Fe2O3 a competitive candidate as a visible light 
photocatalyst [18-22]. Hematite is also valuable due 
to its low cost, high stability, recyclability [18-22], 
and chemical stability above a wide pH range [23,24]. 
For example, three α-Fe2O3  nanoparticles with 
different morphologies were synthesized by Khalaji 
et al. [25] using chemical precipitation and used as 
photocatalyst for the degradation of methyl orange 
under visible light irradiation. Weldegebrieal and 
Sibhatu [26] biosynthesized α-Fe2O3  nanoparticles 
and investigated their photocatalytic activity for the 
degradation of methyl orange and methylene blue 
dyes. Rhombohedral α-Fe2O3 nanoparticles has been 
successfully synthesized using P123 soft template 
assisted route by Ye et al. [27] for photocatalytic 
degradation of bisphenol A. Bisphenol A (BPA) 
{4,4-(propane-2,2-diyl)diphenol} is an environmental 
hormone and a potential endocrine system disrupting 
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chemical (EDC); it is implicated in various health 
issues such as cancer and hereditary diseases, and 
is an extremely toxic organic compound to aquatic 
organisms [27]. Photocatalytic degradation is one of 
the best techniques to selectively degrade BPA from 
wastewaters [27]. In 2023, Khalaji [28] reported the 
photodegradation of methyl orange and methylene 
blue using spherical α-Fe2O3 nanoparticles.  

Recently, we synthesized and characterized 
new shapes of Fe2O3 and investigated the their 
photodegradation efficiency towards organic dyes 
[25,28]. In this work, α-Fe2O3 nanoparticles were 
synthesized using sonochemical-assisted method, 
characterized by several techniques and their 
photocatalytic activity was evaluated by performing 
the photodegradation of bisphenol A (BPA) under 
the visible light irradiation. 

EXPERIMENTAL
Materials and methods

All the materials purchased from the Merck 
Company were of high purity and used as received 
without additional purification. FT-IR spectra were 
gathered by a NICOLET IR200 FT-IR spectrometer. 
Ultraviolet-visible absorption spectra of BPA dye 
solution were recorded on SHIMADZU UV-Vis 
spectrophotometer. The XRD diffraction patterns 
of α-Fe2O3 nanoparticles were recorded using 
Empyrean powder diffractometer of PANalytical 
in the 2θ range of 10-80°. The TEM images were 
obtained on a FEI Tecnai G2 20 microscope with a 
LaB6 cathode. The magnetic properties of samples 
were recorded by SQUID magnetometer.

Preparation of α-Fe2O3 nanoparticles
Pure α-Fe2O3 nanoparticles were prepared with 

the chemical precipitation route. To an aqueous 
solution of FeCl3·6H2O (1 mmol) in 50 mL of 
deoxygenated distilled water under magnetic 
stirring at 80°C, we added benzoic acid (3 mmol) 
and the mixture was stirred for 15 min. Then, 
the aqueous solution of 1 M NH4OH (50 mL) as 
the precipitating agent was added drop by drop 
to maintain a pH value of 11, and the mixture 
was stirred at 80°C for 6 h. The resulting brown 
precipitates were filtered, washed with cold water 
and ethanol for three time, dried in an oven at 80°C, 
and subsequently calcined at 500°C and 700°C for 
3h. Finally, the resulting dark-red precipitates were 
filtered, washed with cold water and ethanol for 
three time, dried in an oven at 80°C for 24 h.

Photocatalytic studies
The photocatalytic activity of Fe-500 and 

Fe-700 nanoparticles was investigated by 
the degradation of bisphenol A (BPA) dye solution 
with the initial concentration of 30 mg/L under 
visible light irradiation. The influence of important 
parameters such as pH solution, contact time, and 
initial BPA concentration on the photocatalytic 
degradation of BPA was studied and discussed. The 
photodegradation efficiency (%) was calculated 
using the equation as follow, where Co is the initial 
BPA concentration and Ct is BPA concentration at 
time t. 

Photodegradation (%) = {(Co-Ct) ×100} / Co  (1)

RESULTS AND DISCUSSION
FT-IR spectra

FT-IR spectra of the as-synthesized Fe-500 
and Fe-700 nanoparticles were recorded at room 
temperature between 4000 and 400 cm-1 and 
are depicted in Fig. 1. The characteristic strong 
absorption peaks observed at 445, 530 and 645 cm-1 
in Fe-500 and at 436 and 575 cm-1 in Fe-700 can 
be attributed to the Fe-O band vibrations [18-23]. 
Also, a broad absorption peak, observed at 3400 
cm-1 in Fe-500 and 3460 cm-1 in Fe-700, is assigned 
to the O-H stretching of adsorbed water molecules 
on the surface of Fe-500 and Fe-700, respectively 
[29-34]. In addition, the very weak absorption 
peak concerning the bending vibration of adsorbed 
water molecules is observed at about 1610 cm-1 
[31].

XRD patterns
XRD analysis were carried out to determine 

the structure and the average crystallite sizes of 
the nanoparticles. The obtained XRD patterns of 
the as-synthesized Fe-500 and Fe-700 samples are 
shown in Fig. 2. The diffraction peaks in Fe-500 
(Fig. 2a) can be indexed in agreement with the 
expected rhombohedral (JCPDS card 024-0072) 
[25,26,30,33,34] and the cubic (JCPDS card 032-
0469) [34] phase structure of α-Fe2O3 consists 
of 47.7% rhombohedral and 52.3% cubic phase. 
On the other hand, Fe-700 (Fig. 2b) is comprised 
purely of hematite. The insets in Fig. 2a and Fig. 2b 
confimrm that the most intense peak of the cubic 
phase completely disappeared in the diffraction 
pattern of Fe-700. The lattice parameters are 
summarized in Table 1.
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Furthermore, relatively sharp diffraction 
peaks in both patterns indicate that sizes of the 
nanoparticles are in the submicron range [29]. 
The average crystallite sizes were calculated using 
Williamson-Hall method (Fig. 3), by plotting a 
graph between β.cosθ and sinθ [24] according to 
Eq. 2. In this equation, β is FWHM in radians, θ 
denotes diffraction angle, k is a shape constant 
between 0.9-1.0, λ represents wavelength of the 
radiation, D stands for particle size, and ε is strain. 
Average sizes of crystallites D were determined 
from the y-intercept of the extrapolated plot:
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Fig. 2. XRD patterns of a) Fe-500 and b) Fe-700 
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which gave D = 215 nm for rhombohedral Fe-
500, D = 101 nm for rhombohedral Fe-500 and D = 
219 nm for rhombohedral Fe-700 (Table 1).

VSM
Magnetic properties of the as-synthesized 

Fe-500 and Fe-700 nanoparticles were investigated 
using a vibrating sample magnetometer at 25°C. 
The magnetization versus applied magnetic 
field (M-H) curves are displayed in Fig. 4. Both 
samples exhibited the ferromagnetic behavior 
[15,18], with maximum Ms of 9.25 emu/g for 
Fe-500 and 11.36 emu/g for Fe-700. The coercivity 
(Hc) of samples is ≈ 190 Oe, while the remanent 
magnetization (Mr) is 2.25 ≈ emu/g for Fe-500 and 
2.75 emu/g for Fe-700.The results are in agreement 
with those reported by Lassoued et al [18] and 
prove that the magnetic saturation of hematite 
nanoparticles depends on the structure and particle 
size [35,36]. 

TEM
The characterizations of size and morphology 

were done using TEM analysis and obtained 
images are shown in Fig. 5. The particle sizes 
larger than 100 nm can be observed in both TEM 
images. Besides that, the sample of Fe-500 contains 
the small-grained fraction, which is in agreement 
with the results of the Williamson-Hall plot (Fig. 
3, Table 1). 

 
Fig. 1. FT-IR spectra of a) Fe-500 and b) Fe-700 

  

Fig. 1. FTIR spectra of a) Fe500 and b) Fe700

Tab. 1. The lattice parameters and average crystallite sizes of Fe-500 and Fe-700 
 

 Fe-500 Fe-700 
rhombohedral  Rhombohedral cubic 

space group R-3 Ia-3 R-3 
a [Å] 5.03258(5) 9.4006(1) 5.02985(9) 
c [Å] 13.7419(2) ---- 13.7297(4) 

phase fraction [%] 47.7 52.3 100 
intercept K 0.0714 0.1522 0.0701 

crystallite size [nm] 215 101 219 
 

Table. 1. The lattice parameters and average crystallite sizes of Fe-500 and Fe-700
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Fig. 2. XRD patterns of a) Fe-500 and b) Fe-700 

  

Fig. 2. XRD patterns of a) Fe-500 and b) Fe-700

 
Fig. 3. Williamson-Hall plots of Fe-500 and Fe-700  

  

Fig. 3. Williamson-Hall plots of Fe-500 and Fe-700
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Photodegradation of BPA
There are several important parameters for 

the photocatalytic degradation of organic dyes, 
such as pH solution, initial BPA concentration, 
photocatalyst dose and irradiation time [37-
43]. The effect of initial pH solution on the 
photodegradation of BPA using the as-prepared 
Fe-500 and Fe-700 nanoparticles was studied and 
the results are shown in Fig. 6.

As shown in Fig. 6, the as-prepared α-Fe2O3 
nanoparticles had poor photodegradation 
efficiency at pH of 3, due to the protonation of active 
groups on the surface of α-Fe2O3 nanoparticles 
as photocatalyst. However, with the increase of 

pH solution, the surface of α-Fe2O3 nanoparticles 
become deprotonated, creating suitable contact 
between photocatalyst surface and photogenerated 
radicals [26]. Therefore, the photocatalytic 
efficiency increased and reached to the maximum 
of 98% for Fe-500 and 90% for Fe-700 at the pH 
solution of 8. Sample Fe-500 exhibited more 
photocatalytic activity than Fe-600 possibly due to 
its higher degree of crystallinity [26]. In alkaline pH 
environment (pH > 8), the electrostatic repulsion 
between the produced bisphenolate anions and the 
negatively charged surface of the catalyst prevails 
and leads to lower photodegradation rates [27]. 
Further, Fig. 6 indicates that the Fe precursor 

 
Fig. 4. Magnetic hysteresis loops of a) Fe-500 and b) Fe-700 

  

Fig. 4. Magnetic hysteresis loops of a) Fe-500 and b) Fe-700

 
Fig. 5. TEM images of a) Fe-500 and b) Fe-700 

  

Fig. 5. TEM images of a) Fe-500 and b) Fe-700
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exhibit poor efficiency toward photodegradation of 
BPA and cannot be used as a photocatalyst.

The effects of the initial BPA concentration and 
irradiation time on the photodegradation of BPA 
are demonstrated in Fig. 7 and Fig. 8, respectively. 
By increasing the initial concentration of BPA from 
10 to 30 mg/L, the degradation percentage of BPA 
was reduced from 98 to 94% for Fe-500 and from 
90 to 84% for Fe-700 after 330 min of irradiation 
due to the limited generation of OH° [19,27] and 
also lower penetration of photons in the solution 
phase [19]. From the results it can be concluded 
that BPA was almost completely adsorbed on the 
surface of catalysts and only a small amount of BPA 
molecules remained in the solution. At the initial 
concentration of BPA of 50 mg/L, the maximum 
efficiency was 61% for Fe-500 and Fe-700 51% for, 
indicating that a large amount of BPA remained 
dissolved and could not be photodegraded. Also, 
as seen in Fig. 7 and Fig. 8, by increasing the 

irradiation time, the photodegradation efficiency 
increased until it reached the saturation level [7,20].

The simplified Langmuir kinetic model [7] was 
used to evaluate the photocatalytic activity of the 
as-synthesized Fe-500 and Fe-700 nanoparticles. 
The plots of –ln(Ct/Co) over time are shown in Fig. 
9. The linear relationship of the plots confirmed that 
the photodegradation process follow the pseudo 
first order kinetic model [4,18-20,25], with the rate 
constants k=9.96 × 10-3 min-1 for Fe-500 and k=5.55 
× 10-3 min-1 for Fe-700. The calculated data are in 
agreement with the rate constants reported by Ye et 
al. [27] and Wang et al [33].

The recyclability and reusability of magnetic 
materials as photocatalysts or adsorbents is 
their greatest advantage [19]. The as-synthesized 
Fe-500 and Fe-700 nanoparticles were recycled 
by centrifugation, washing twice with distilled 
water, drying at 75 °C for 3h and then reused for 
the photodegradation of BPA. Fig. 10 demonstrates 

 
Fig. 6. The effect of initial pH solution on the photodegradation of BPA using a) Fe-500 and b) 

Fe-700 (30 mg/L, 330 min, 25 ºC) 
  

Fig. 6. The effect of initial pH solution on the photodegradation of BPA using a) Fe-500 and b) Fe-700 (30 mg/L, 330 min, 25 ºC)

 
Fig. 7. The effect of initial concentration of BPA and irradiation time on the photodegradation 

efficiency of Fe-500 (pH 8, 25 ºC) 
  

Fig. 7. The effect of initial concentration of BPA and irradiation time on the photodegradation efficiency of Fe-500 (pH 8, 25 ºC)
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Fig. 8. The effect of initial concentration of BPA and irradiation time on the photodegradation 

efficiency of Fe-700 (pH 8, 25 ºC) 

  

Fig. 8. The effect of initial concentration of BPA and irradiation time on the photodegradation efficiency of Fe-700 (pH 8, 25 ºC) 

 

 
Fig. 9. Pseudo first order kinetic model of the photocatalytic degradation of BPA using as-

synthesized Fe-500 and Fe-700 nanoparticles 
  

Fig. 9. Pseudo first order kinetic model of the photocatalytic degradation of BPA using as-synthesized Fe-500 and Fe-700 nanoparticles

 
Fig. 10. The effect of cycle numbers of a) Fe-500 and b) Fe-700 on photodegradation of BPA 

 

Fig. 10. The effect of cycle numbers of a) Fe-500 and b) Fe-700 on photodegradation of BPA
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that the photodegradation of BPA after five cycles 
was reduced to 90% for Fe-500 and 81% for Fe-700. 
Small loss of efficiency is due to the deprivation 
of Fe-500 and Fe-700 nanoparticles during the 
washing process [9], as well as the obstruction of 
active sites by adsorbed BPA molecules that were 
not completely eliminated during washing and 
dyeing [19,36,40].

The other key factors for the efficiency of 
photocatalysis are size and morphology of the 
nanoparticles because there is a direct relationship 
between specific surface area and number of active 
sites [18,42]. Further, narrow band gap of the 
semiconductor promotes absorption of the visible 
light to produce electron-hole pairs [19,41], which 
is essential for the photocatalytic process. Upon 
light irradiation, electrons from the VB can be 
excited to the CB of the semiconductor, leading 
to the formation of an electron-hole pair as high 
oxidative potential to oxidation of organic dyes to 
reactive intermediates [4-7]. Furthermore, very 
reactive radicals such as OH° and O2

-° can also be 
prepared by reaction of electron-hole pair with 
H2O and O2 molecules [4-7].

The possible reaction mechanism of degraded 
BPA in an equation form is described as follow 
[19,37,41]:

Fe2O3 + hv → h+ + e-

e- + O2 → O2
-°

O2
-° + H2O2 → H2O2 + OH- + OH°

e- + H2O2 → OH° + OH-

h+ + OH- → OH°
OH° + BPA → degraded products

Finally, the degraded products of BPA can be 
deposited on the surface of the as-synthesized 
Fe-500 and Fe-700 nanoparticles at the bottom of 
the backer and simply removed by centrifugation 
of the suspension or by external magnet.

CONCLUSIONS
In summary, two magnetic hematite 

nanomaterials (Fe-500 and Fe-700) with average 
diameter sizes of 100-219 nm were successfully 
synthesized using a simple, and low-cost chemical 
precipitation route accompanied by calcination at 
500 °C and 700 °C. The as-prepared compounds 
were characterized by several techniques. VSM 
results confirmed the ferromagnetic behavior of 
both Fe-500 and Fe-700, known as soft magnetic 
materials. XRD and TEM results revealed that Fe-

700 is pure rhombohedral phase of Fe2O3 (hematite) 
whereas Fe-500 is a mixture of 47.7% rhombohedral 
and 52.3% cubic phases of Fe2O3. In addition, the 
effect of initial pH solution, BPA concentration 
and contact time of photodegradation of BPA 
using as-prepared compounds were studied. The 
results predicted that the compounds exhibit a high 
photocatalytic efficiency for BPA (98% for Fe-500 
and 90% for Fe-700) in visible light range with a 
good prospect for their recovery and reusability. 
Therefore, the as-prepared compounds Fe-500 
and Fe-700 will be most promising candidates in 
wastewater management and removal of different 
organic dyes.
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