RESEARCH PAPER

The Stage Dependent Effect of Capping Agent Introduction in the Synthesis of Magnetite Nanoparticles

Matthew V. Hickson*, Zenixole R. Tshentu and Richard Betz

Department of Chemistry, Nelson Mandela University, Port Elizabeth, 6031, South Africa

ARTICLE INFO ABSTRACT In this paper, three techniques to obtain capped magnetite nanoparticles were compared. In the Article History: formation of magnetite nanoparticles via the co-precipitation route, capping agents were introduced Received 25 April 2018 pre-, simultaneously with, or post-addition of the precipitating agent, ammonia. The amino acids L-Accepted 13 August 2019 glutamine and L-glutamic acid were used as the capping agents. Characterization via TEM, pXRD, EDX, Published 15 October 2019 and magnetic analysis displayed that the stage of introduction affected the properties of the nanoparticles obtained. Confirmation of capping was performed by FTIR and X-ray photoelectron Keywords: spectroscopy. TEM displayed that the post-addition method yielded nanoparticles with the narrowest Amino Acids size distributions, having attractive dispersity values. The pre- and simultaneously-introduced methods Capping Agent produced smaller nanoparticles but had relatively higher size distributions. Crystallite size determined Magnetite Nanoparticles from pXRD showed that the post-addition method had the highest crystallite size, even compared to the uncapped nanoparticles, while the pre-introduced were much less crystalline. From the magnetic studies, the post-introduction method was shown to yield the highest magnetic saturation values, even when taking magnetically dead layers into account. It was also shown that the simultaneous and preintroduction methods yielded similar magnetic saturation values despite size differences. How to cite this article

Hickson MV, Tshentu ZR, Betz R. The Stage Dependent Effect of Capping Agent Introduction in the Synthesis of Magnetite Nanoparticles. Nanochem Res, 2019; 4(2):***-***. DOI: 10.22036/ncr.2019.02.012

* Corresponding Author Email: m.v.hickson@gmail.com

Fig. S1: EDX spectrum of the bare nanoparticles.

Fig. S2: High resolution XPS spectra of the iron (a), carbon (b), nitrogen (c) and oxygen (d) regions of the PostE nanoparticles

Table S1: Peak positions observed in FTIR spectroscopy for the bare and capped nanoparticles.

Assignment		Peak Position						
Assignment	Bare	PreQ	SimQ	PostQ	PreE	SimE	PostE	
ν(O-H)	3352	3346	3323	3374	3328	3325	3330	
δ(O-H)	1634	-	-	-	-	-	-	
v(-COO)	-	1632	1631	1634	1630	1615	-	
δ(N-H)	-	-	-	-	-	-	1575	
v(-COO) ^{s.c.}	-	-	-	-	-	-	1534	
$v_{s}(-COO)$	-	-	1392	1393	1394	1391	1401	
v(Fe-O)	541	544	542	545	543	543	556	

Douti ala Truna	Binding Energy (eV			
Particle Type	Fe 2p _{3/2}	Fe $2p_{1/2}$		
Bare	711.27	724.75		
PreQ	709.23	722.67		
SimQ	710.23	723.71		
PostQ	710.99	724.23		
PreE	709.03	722.79		
SimE	710.75	724.11		
PostE	710.95	724.51		

Table S2: Binding energies of the Fe $2p_{3/2}$ and Fe $2p_{1/2}$ peaks.

Douti alo Truno	Binding Energy (eV)				
Particle Type	C 1 <i>s</i>	N 1 <i>s</i>	O 1 <i>s</i>		
Bare	285.43; 289.07	-	530.43		
PreQ	282.83; 285.67	397.62	527.67		
SimQ	285.19; 289.07	399.98	530.03		
PostQ	285.39; 289.15	399.97	530.11		
PreE	282.67	397.89	527.51		
SimE	285.43; 289.23	400.01	530.19		
PostE	285.39; 288.87	400.04	530.31		

Table S3: Binding energies of carbon, nitrogen, and oxygen 1 s peaks.