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ABSTRAC T

Over the last decade, engineering the polymeric vascular grafts has been 
extensively studied. Various types of polymers have been used in this 
field such as synthetic polymers, natural polymers, and polymer blends. 
Synthetic polymers, such as Polycaprolactone (PCL), have displayed 
improved mechanical specifications compared to natural polymers. 
Polycaprolactone is biodegradable polyester that can be blended with 
another synthetic polymer or a natural polymer to yield even greater 
enhanced mechanical properties. The mechanical properties of artificial 
blood vessels play an important role while the vessels are attached to 
the native vessels in the animal body. Furthermore, the artificial blood 
vessels must be adequately strong to resist frequent blood circulation and 
related pressure. The most significant advantage of engineered vascular 
tissue implants is their ability to grow, remodel, rebuild, and respond to 
injury. This article serves as a review of the fabrication, specifications, and 
benefits of various kinds of polycaprolactone grafts. The primary focus is 
on the in vivo implantation of nanofibrous ones for vascular regeneration 
in large and small animals. First, the subject of the study was thoroughly 
investigated, then the search was conducted with a combination of index 
and text terms. Finally, a number of articles, scientific books, patents, 
manuals, and university theses were selected and studied, and the 
obtained data were analyzed, categorized, and edited. PCL polymer has 
been the most sought-after biodegradable polymer for use as a vascular 
tissue engineering material.
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INTRODUCTION
Polycaprolactone (PCL) 

Polycaprolactone is a biodegradable polyester 
having a low melting point of about 60 °C and a 
glass transition temperature of about −60 °C[1-3]. 
The most widespread public usage of PCL is in the 
manufacture of specialty polyurethanes (Table 1) 
[4-6].

Vascular Tissue Engineering
Vascular tissue damages resulting from defects, 

accidents, wounds or other kinds of injuries poses a 
significant challenge to human health [10].

However, in current years, the use of tissue 
engineering methods has become increasingly 
important in advancing the field of cardio-vascular 
biology and improving patient care [11-15]. The 
objective of vascular tissue engineering is to produce 
neo-vessels and neo-organ tissue using autologous cells 
through a biodegradable polymer like polycaprolactone 
(PCL) as a scaffold [16-18]. Fabrication of scaffolds 
with improved mechanical properties and promising 
cellular compatibility is essential for many tissue 
engineering applications [8,19-20]. Favorable scaffolds 
can be prepared via reinforcement with nanoparticles 
and hydrogels [21-23].
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A proper vascular graft must reproduce 
the biomechanical specifications of blood 
vessels, as serving like a platform for cell 
attachment and proliferation [24-26]. It must 
exhibit nonthrombogenic, nonimmunogenic, 
biocompatible, and hemocompatible 
properties; biodegradability, suitable pore size, 
and elasticity are also important factors [27-
29]. Therefore, this graft must aid the in vivo 
regeneration of a tissue-engineered vascular 
material after being implanted in a suitable 
location (Fig. 1 )[30-32].

Fig. 1: in vivo implantation of vascular grafts : (A) Tissue engineered blood vessels; (B) Tissue engineered graft was 
implanted amongst the axillary vein and the humeral artery as an arterial venous shunt [11]. 

  
A B 

Fig. 1: in vivo implantation of vascular grafts : (A) Tissue engineered blood vessels; (B) Tissue engineered graft was implanted amongst 
the axillary vein and the humeral artery as an arterial venous shunt [11].

 

Table 1: Specifications of Polycaprolactone [7-9].

Application of PCL Nanofibrous Grafts in the 
Vascular Regeneration

PCL nano-fibrous scaffolds possess 
substantial surface area–to-volume ratios and 
porosity that resemble the structure of protein 
fibers in native ECM [33-35]. The versatilities 
of polymer components, fiber structures, 
and functionalization have made feasible the 
fabrication of PCL nanofibrous scaffolds with 
appropriate mechanical strength, transparency, 
and biological specifications for vascular tissue 
engineering [17, 36]. 
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Non immunogenic autologous endothelium cells 
and smooth muscle cells (tunica media area) are 
isolated from patients. These cells are optimal 
choices for vessel tissue engineering [15, 38].

Table 2 presents the results of PCL vascular 
implantation surgery in the blood vessels 
(abdominal aorta, carotid artery) of various 
animals (Rat, Rabbit, Sheep, Canine). 

SEM OBSERVATION
Scanning electron microscopy (SEM), an easily 

acquired and widely applied image acquisition and 
analysis method [52, 53], has rarely been used to 
study the structure of PCL scaffolds after cell culture 
process. Fig. 3 exhibits the SEM images of cultured 
cells on PCL scaffolds for vascular regeneration.

Fig. 2: Schematic illustration of an artery. 

 

  

Fig. 2: Schematic illustration of an artery.

Implantation of PCL Vascular Grafts 
The fabrication of PCL nanofibrous scaffolds for 

cell cultivating serves as an important process for 
vascular tissue engineering method. Subsequently, 
implanting the PCL scaffold-cell matrix in an animal 
body is a main stage for vascular regeneration. One 
of the primary benefits of vascular engineered 
implants is that these tissues can grow, remodel, 
rebuild, and respond to damage [14, 37].

Implantation of PCL Scaffolds in the Blood Vessels 
A blood vessel consists of three covers: 

intima (internal layer), media (central layer), and 
adventitia (external layer) (Fig. 2). 

In the process of blood vessel tissue engineering, 
effective phases include cell sources, cell culture, 
scaffolds, vessel bio-reactors, and implantation. 

Fig. 3. SEM images of different cells cultured on the PCL scaffolds: A) HCEC-B4G12 cells cultured on SF-P(LLA-

CL) nano-fibrous scaffold after 1 week; B) HCEC―B4G12 cells cultured on SF―P(LLA―CL) 50:50 

nano―fibrous scaffolds after 1 week[15, 26]. 
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Fig. 3. SEM images of different cells cultured on the PCL scaffolds: A) HCEC-B4G12 cells cultured on SF-P(LLA-CL) nano-fibrous 
scaffold after 1 week; B) HCEC―B4G12 cells cultured on SF―P(LLA―CL) 50:50 nano―fibrous scaffolds after 1 week[15, 26].



176

F. S. Fattahi et al. / Emerging Nanofibrous Polycaprolactone Vascular Grafts in the Animal Models

Nanochem Res 8(3):173-180, Summer 2023

Table 2 : in vivo assays of PCL vascular grafts in small and large animal models.
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Table 2 : in vivo assays of PCL vascular grafts in small and large animal models (Continued).
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CONCLUSIONS

In recent years, adapting tissue engineering 
methods is crucial for advancing the field of cardio-
vascular biology and providing better patient 
care. PCL polymer has drawn significant attention 
amongst the biodegradable polymers as an 
appropriate vascular tissue engineering material.
The authors propose an alternative strategy, namely 
“Ultraviolet/O3 Irradiation,” on the PCL nanofibers 
(for increasing of cell adhesion on the scaffolds). 
This strategy is expected to improve the success of 
scaffold implantation.
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