Electrooxidation of Phenylhydrazine on Nanostructured Co-Mo Alloy Electrodes in Alkaline Medium

Document Type : Research Paper

Author

Department of Chemistry, Sayyed Jamaleddin Asadabadi University, Asadabad, Iran

10.22036/ncr.2023.421042.1335

Abstract

In this work, we investigated the electrocatalytic activity of electrodeposited cobalt and CoMo alloy electrodes towards the oxidation of phenylhydrazine in 1 M sodium hydroxide aqueous solution. A previously proposed nontoxic tartrate electrolyte was employed to electrodeposit alloys. Electrochemical methods such as cyclic voltammetry (CV), chronoamperometry (CA), and electrochemical impedance spectroscopy (EIS) were used to study the electrooxidation of phenylhydrazine. When compared to pure cobalt electrodes, the voltammetric data for cobalt-molybdenum alloy electrodes indicated a lower peak potential and a higher peak current density. According to the EIS results, the polarization resistance of the Co-Mo alloy electrodes was much lower compared to the pure Co in 0.1 M phenylhydrazine basic solution. The CA results demonstrated that Co-Mo electrodes had greater stability than cobalt electrode. The Co-25 at % Mo and Co-33 at % Mo electrodes had higher catalytic activity among other synthesized electrodes for phenylhydrazine oxidation in an alkaline medium, the former being the best electrocatalysts for the phenylhydrazine electrooxidation.

Keywords


1.    Shwetha BR, Siddalingaprasad HS, Swamy S, Nagalakshmi NC, Hariprasad MG. Mechanism of haematotoxicity induced by phenylhydrazine: a review. Journal of Applied Pharmaceutical Research. 2019;7(4):01-6.
2.    Hren M, Božič M, Fakin D, Kleinschek KS, Gorgieva S. Alkaline membrane fuel cells: anion exchange membranes and fuels. Sustainable Energy Fuels. 2021;5(3):604-37.
3.    Shukla P, Yadav N, Singh P, Bansode F, Singh R. Phenylhydrazine Induced Toxicity: A Review on its Haematotoxicity. International Journal of Basic and Applied Medical Sciences ISSN: 2277-2103 (Online). 2012;ISSN:2277-103.
4.    Sharifi M, Donisa C, Joza P. A Sensitive and Quantitative Isotope-Dilution LC-MS/MS Method for Analysis of Hydrazine in Tobacco Smoke. Journal of Chromatographic Science. 2020;58(2):83-90.
5.    Zakaria SA, Talal Z, Othman NS. Using 2, 4-dinitrophenylhydrazine in spectrophotometric determination. Samarra Journal of pure Applied Science. 2022;4(2):107-17.
6.    Aloke C, Uche Emelike C, Ajuka Obasi N, Nkemjika Ogbu P, Oswald Edeogu C, Godwin Uzomba C, et al. HPLC profiling and studies on Copaifera salikounda methanol leaf extract on phenylhydrazine-induced hematotoxicity and oxidative stress in rats. Arabian Journal of Chemistry. 2021;14(12):103428.
7.    Parvarinezhad S, Salehi M. Synthesis, characterization, crystal structures, Hirshfeld surface analysis and DFT computational studies of new Schiff Bases derived from Phenylhydrazine. Journal of Molecular Structure. 2020;1222:128780.
8.    Zhou H, Cai Y, Zhang M, Li W, Zhao Y. A miniature chemiluminescence spectrometric system induced by atmosphere microplasma jet to avoid using hydrogen peroxide and catalyst. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy. 2022;279:121399.
9.    Li J, Nadine Joelle EN, Yang Q, Zheng F, Liu W, Liu J. Determination of residual phenylhydrazines in drug substances by high-performance liquid chromatography with pre-column derivatization. Analytical Methods. 2019;11(48):6146-52.
10.    Karami F, Karami S. Stationary phases based on the nanoparticles for pharmaceutical and biomolecule separations. Nanochemistry Research. 2021;6(1):25-52.
11.    Piryaei M, Abolghasemi MM, Sobhi M. A New Method for Extracting and Measuring Methoxyfenozide Using ND/PAN-K10 SPE Using High Performance Liquid Chromatography. Nanochemistry Research. 2023;8(3):197-204.
12.    Umar A, Ibrahim AA, Kumar R, Rana K, Algadi H, Alhamami MA, et al. Aluminum doped ZnO nanorods for enhanced phenylhydrazine chemical sensor applications. Science of Advanced Materials. 2021;13(12):2483-8.
13.    Roushani M, Bakyas K, Zare Dizajdizi B, Azadbakht A. Sensitive amperometric detection of hydrazine using a rutin/graphene-chitosan nanocomposite modified glassy carbon electrode. Nanochemistry Research. 2020;5(2):185-96.
14.    Norouz-Sarvestani F, Khoshfetrat SM. A facile one-step electrochemical preparation of graphene–Pd nanocomposite as a catalyst for hydrogen evolution reaction. Nanochemistry Research. 2023;8(3):215-23.
15.    Wang T, Wang Q, Wang Y, Da Y, Zhou W, Shao Y, et al. Atomically Dispersed Semimetallic Selenium on Porous Carbon Membrane as an Electrode for Hydrazine Fuel Cells. Angewandte Chemie International Edition. 2019;58(38):13466-71.
16.    Zhang T, Asefa T. Heteroatom-Doped Carbon Materials for Hydrazine Oxidation. Advanced Materials. 2019;31(13):1804394.
17.    Vasseghian Y, Le VT, Joo S-W, Dragoi E-N, Kamyab H, Chelliapan S, et al. Spotlighting graphene-based catalysts for the mitigation of environmentally hazardous pollutants to cleaner production: A review. Journal of Cleaner Production. 2022;365:132702.
18.    Khalafallah D, Zhi M, Hong Z. Development Trends on Nickel-Based Electrocatalysts for Direct Hydrazine Fuel Cells. ChemCatChem. 2021;13(1):81-110.
19.    Cheng Y, Wu X, Xu H. Catalytic decomposition of hydrous hydrazine for hydrogen production. Sustainable Energy & Fuels. 2019;3(2):343-65.
20.    Yao Q, Ding Y, Lu Z-H. Noble-metal-free nanocatalysts for hydrogen generation from boron-and nitrogen-based hydrides. Inorganic Chemistry Frontiers. 2020;7(20):3837-74.
21.    Wu H, Feng C, Zhang L, Zhang J, Wilkinson DP. Non-noble Metal Electrocatalysts for the Hydrogen Evolution Reaction in Water Electrolysis. Electrochemical Energy Reviews. 2021;4(3):473-507.
22.    Sakamoto T, Masuda T, Yoshimoto K, Kishi H, Yamaguchi S, Matsumura D, et al. NiO/Nb2O5/C Hydrazine Electrooxidation Catalysts for Anion Exchange Membrane Fuel Cells. Journal of The Electrochemical Society. 2017;164(4):F229.
23.    Kaur B, Srivastava R, Satpati B. Copper nanoparticles decorated polyaniline–zeolite nanocomposite for the nanomolar simultaneous detection of hydrazine and phenylhydrazine. Catalysis Science & Technology. 2016;6(4):1134-45.
24.    Abdolmaleki M, Bodaghi A, Hosseini J, Jamehbozorgi S. Preparation of nanostructured Co–Mo alloy electrodes and investigation of their electrocatalytic activity for hydrazine oxidation in alkaline medium. Journal of the Chinese Chemical Society. 2018;65(8):970-6.
25.    Xu T, Wu X, Li Y, Xu W, Lu Z, Li Y, et al. Morphology and Phase Evolution of CoAl Layered Double Hydroxides in an Alkaline Environment with Enhanced Pseudocapacitive Performance. ChemElectroChem. 2015;2(5):679-83.
26.    De Silva O, Singh M, Mahasivam S, Mahmood N, Murdoch BJ, Ramanathan R, et al. Importance of Phase Purity in Two-Dimensional β-Co(OH)2 for Driving Oxygen Evolution. ACS Applied Nano Materials. 2022;5(9):12209-16.
27.    Jung H, Ma A, Abbas SA, Kim HY, Choe HR, Jo SY, et al. A new synthetic approach to cobalt oxides: Designed phase transformation for electrochemical water splitting. Chemical Engineering Journal. 2021;415:127958.
28.    Andreu T, Mallafré M, Molera M, Sarret M, Oriol R, Sirés I. Effect of Thermal Treatment on Nickel-Cobalt Electrocatalysts for Glycerol Oxidation. ChemElectroChem. 2022;9(9):e202200100.
29.    Goyal R, Srivastava AK. Mechanism of electrochemical oxidation of phenylhydrazine at pyrolytic graphite electrode. 1995.
30.    Zhukova OS, Lazareva LP, Glushchenko VY. Electrochemical Decomposition of Phenylhydrazine on a Fibrous Carbon Electrode. Russian Journal of Applied Chemistry. 2001;74(2):219-23.
31.    Wang T, Cao X, Qin H, Chen X, Li J, Jiao L. Integrating energy-saving hydrogen production with methanol electrooxidation over Mo modified Co4N nanoarrays. Journal of Materials Chemistry A. 2021;9(37):21094-100.
32.    Lei L, Huang D, Chen Y, Chen S, Deng R. Design of an amorphous and defect-rich CoMoOF layer as a pH-universal catalyst for the hydrogen evolution reaction. Journal of Materials Chemistry A. 2021;9(13):8730-9.
33.    Kuriganova AB, Leontyeva DV, Ivanov S, Bund A, Smirnova NV. Electrochemical dispersion technique for preparation of hybrid MOx–C supports and Pt/MOx–C electrocatalysts for low-temperature fuel cells. Journal of Applied Electrochemistry. 2016;46(12):1245-60.
34.    Antolini E, Salgado JRC, Santos LGRA, Garcia G, Ticianelli EA, Pastor E, et al. Carbon supported Pt–Cr alloys as oxygen-reduction catalysts for direct methanol fuel cells. Journal of Applied Electrochemistry. 2006;36(3):355-62.
35.    Scott K, Cotlarciuc I, Hall D, Lakeman JB, Browning D. Power from marine sediment fuel cells: the influence of anode material. Journal of Applied Electrochemistry. 2008;38(9):1313-9.
36.    Mele C, Bilotta A, Bocchetta P, Bozzini B. Characterization of the particulate anode of a laboratory flow Zn–air fuel cell. Journal of Applied Electrochemistry. 2017;47(8):877-88.
37.    Wang C, Tomov RI, Mitchell-Williams TB, Kumar RV, Glowacki BA. Inkjet printing infiltration of Ni-Gd:CeO2 anodes for low temperature solid oxide fuel cells. Journal of Applied Electrochemistry. 2017;47(11):1227-38.
38.    Ramya S, Arunchandran C, George RP. Studies on Hybrid Sol–Gel Silica/PVP Coatings on Modified 9Cr–1Mo Steel. Transactions of the Indian Institute of Metals. 2015;68(4):513-9.
39.    Singh RN, Sharma T, Singh A, Anindita, Mishra D, Tiwari SK. Perovskite-type La2−xSrxNiO4 (0≤x≤1) as active anode materials for methanol oxidation in alkaline solutions. Electrochimica Acta. 2008;53(5):2322-30.
40.    Kubisztal J, Budniok A, Lasia A. Study of the hydrogen evolution reaction on nickel-based composite coatings containing molybdenum powder. International Journal of Hydrogen Energy. 2007;32(9):1211-8.