Biobased Polylactide Nanoparticles as Novel Gene Delivery Nanoplatforms: Can They Be Used for DNA Transport?

Document Type : Review Paper

Author

Department of Textile Engineering, Isfahan University of Technology Isfahan, Iran

10.22036/ncr.2023.421622.1337

Abstract

Gene therapy is a rapidly progressing field with vast prospective for fundamentally treating human diseases such as cancer, damaged tissues, and genetic syndromes. Between various approaches of gene delivery, there is a growing interest in oral administration of DNA as one of the safest and most straightforward methods. Nanoparticles are some of the important examples of nano-materials for molecule delivery (drugs, growth factors and DNA) used in biomedical applications. Several researchers have revealed the process of nanotechnology, specifically polymeric nanoparticles, as DNA delivery structures for transdermal routines. Polylactic acid (PLA) and its famous co-polymer polylactic-co-glycolic (PLGA) are biocompatible synthetic polymers widely used to produce nanoparticles. Biobased, biosourced, biodegradable biocompatible, and bioabsorbable polylactide nanoparticles are one of the most promising materials in gene therapy serving as DNA delivery vehicles. Polylactide nanoparticles are easily processable and undergo degradation into natural metabolites while matching its degradation rate with the healing time of damaged human tissues. This mini review presents the new developments in the applications of polylactide nanoparticles as DNA delivery systems. In addition, the release of DNA from these nanoplatforms will be reported briefly.

Keywords


1.    Pan Wu, Haojiao Chen, Ronghua Jin, Tingting Weng, Jon Kee Ho, Chuangang You, et al. Non‑viral gene delivery systems for tissue repair and regeneration. J Transl Med. 2018;16(29).
2.    Karimi Jabali M, Allafchian AR, Jalali SAH, Shakeripour H, Mohammadinezhad R, Rahmani F. Design of a pDNA nanocarrier with ascorbic acid modified chitosan coated on superparamagnetic iron oxide nanoparticles for gene delivery. Colloids and Surfaces A: Physicochemical and Engineering Aspects. 2022;632:127743.
3.    Panchal SS, Vasava DV. Synthetic biodegradable polymeric materials in non-viral gene delivery. International Journal of Polymeric Materials and Polymeric Biomaterials. 2023:1-12.
4.    Rahimi H, Zaboli KA, Thekkiniath J, Mousavi SH, Johari B, Hashemi MR, et al. BSA-PEI Nanoparticle Mediated Efficient Delivery of CRISPR/Cas9 into MDA-MB-231 Cells. Molecular Biotechnology. 2022.
5.    Mushtaq A, Iqbal MZ, Kong X. Calcium Carbonate-Based Nanoparticles for Gene Delivery. In: Tian H, Chen X, editors. Gene Delivery. Singapore: Springer Nature Singapore; 2022. p. 481-503.
6.    Liao Z, Huo S, Liang X-J. Preparation of Ultrasmall Gold Nanoparticles for Nuclear-Based Gene Delivery. In: Tian H, Chen X, editors. Gene Delivery. Singapore: Springer Nature Singapore; 2022. p. 335-43.
7.    Shin H, Kim J. Nanoparticle-based non-viral CRISPR delivery for enhanced immunotherapy. Chemical Communications. 2022;58(12):1860-70.
8.    Bakhtiar A, Neah AS, Ng KY, Chowdhury EH. In vivo evaluation of biodistribution and toxicity of pH-responsive strontium nanoparticles for gene delivery. Journal of Pharmaceutical Investigation. 2022;52(1):95-107.
9.    Malina J, Kostrhunova H, Novohradsky V, Scott P, Brabec V. Metallohelix vectors for efficient gene delivery via cationic DNA nanoparticles. Nucleic Acids Research. 2022;50(2):674-83.
10.    Li Y, Xu X. Bioinspired Fabrication of Peptide-Based Capsid-Like Nanoparticles for Gene Delivery. In: Tian H, Chen X, editors. Gene Delivery. Singapore: Springer Nature Singapore; 2022. p. 219-33.
11.    Kavanagh EW, Green JJ. Toward Gene Transfer Nanoparticles as Therapeutics. Advanced Healthcare Materials. 2022;11(7):2102145.
12.    Fattahi FS, Zamani T. Synthesis of polylactic acid nanoparticles for the novel biomedical applications: a scientific perspective. Nanochemistry Research. 2020;5(1):1-13.
13.    Kafshdooz T, Kafshdooz L, Akbarzadeh A, Hanifehpour Y, Joo SW. Applications of nanoparticle systems in gene delivery and gene therapy. Artificial Cells, Nanomedicine, and Biotechnology. 2016;44(2):581-7.
14.    Rai R, Alwani S, Badea I. Polymeric Nanoparticles in Gene Therapy: New Avenues of Design and Optimization for Delivery Applications. Polymers. 2019;11(4):745.
15.    Singh P, Muhammad I, Nelson NE, Tran KTM, Vinikoor T, Chorsi MT, et al. Transdermal delivery for gene therapy. Drug Deliv Transl Res. 2022;12(11):2613-33.
16.    Figueroa ER, Lin AY, Yan J, Luo L, Foster AE, RA. D. Optimization of PAMAM-gold nanoparticle conjugation for gene therapy. . Biomaterials. 2014;35(5):1725–34.
17.    Wang J, Zhu R, Gao B, Wu B, Li K, X S. The enhanced immune response of hepatitis B virus DNA vaccine using SiO2@LDH nanoparticles as an adjuvant. . Biomaterials 2014;35(1):466–78.
18.    Lu H, Lv L, Dai Y, Wu G, Zhao H, F. Z. Porous chitosan scaffolds with embedded hyaluronic acid/chitosan/plasmid-DNA nanoparticles encoding TGF-beta1 induce DNA controlled release, transfected chondrocytes, and promoted cell proliferation. . PLoS ONE. 2013;8(7).
19.    Suwalski A, Dabboue H, Delalande A, Bensamoun SF, Canon F, P M. Accelerated Achilles tendon healing by PDGF gene delivery with mesoporous silica nanoparticles. . Biomaterials. 2010;31(19):5237–45.
20.    Raftery RM, Tierney EG, Curtin CM, Cryan SA, FJ. OB. Development of a gene-activated scaffold platform for tissue engineering applications using chitosan-pDNA nanoparticles on collagen-based scaffolds. . J Control Release. 2015;210:84–94.
21.    Liu Y, Shi M, Xu M, Yang H, C. W. Multifunctional nanoparticles of Fe3O4@SiO2(FITC)/PAH conjugated the recombinant plasmid of pIRSE2-EGFP/VEGF(165) with dual functions for gene delivery and cellular imaging. . Expert Opin Drug Deliv. 2012;9(10):1197–207.
22.    Fattahi F, Zamani T. Investigation into the Effects of Nano-fibrous Wound Dressings on Wound Healing Process in Animal Models. Journal of Textile Science and Technology. 2020;8(4):29-48.
23.    Fattahi F, Zamani T. Poly (Lactic Acid) Nanoparticles: A Promising Hope to Overcome the Cancers. Journal of Fasa University of Medical Sciences. 2021;11(2):3791-814.
24.    Fattahii F. Biocompatible Gelatin Nanofibers as Potential Anticancer Drug Delivery Systems. Current Research in Medical Sciences. 2022;6(1):25-33.
25.    Fattahi FS. Emerging Nanofibrous Polycaprolactone Vascular Grafts in Small and Large Animal Models: in vivo and in vitro Analyses. Nanochemistry Research. 2023;8(3):173-80.
26.    Fattahi FS, Khoddami A, Avinc O. Nano-fibrous and tubular poly (lactic acid) scaffolds for vascular tissue engineering. Nanomedicine Research Journal. 2019;4(3):141-56.
27.    Fattahi FS, Khoddami A, Izadian H. Review on Production, Properties, and Applications of Poly(lactic acid) Fibers. Journal of Textile Science and Technology. 2015;5(1):11-7.
28.    Fattahi F-s. Study on the Colorimetric Characteristics and Microstructural Properties of Poly(ethylene terephthalate) Fabrics after the Surface Modification with Ultraviolet Irradiation/Ozone Gas. Journal of Textile Science and Technology. 2022.
29.    Fattahi F-s, Zamani T. Hemocompatibility poly (lactic acid) nanostructures: A bird’s eye view. Nanomedicine Journal. 2020;7(4):263-71.
30.    Fattahi F. Quantitative analyze of fourier transform infrared spectroscopy (FTIR) of poly (lactic acid) after UV/Ozone irradiation. J Text Sci Technol. 2019;8:47-55.
31.    Fattahi FS. Environmental Friendly Bleaching Process of Polyester Materials via Direct Process of Water without Heating System. Nanochemistry Research. 2023;8(4):267-77.
32.    Fattahi F-s. Evaluation of the Application of Polylactic Acid Bioactive Scafolds in Reconsructive Medicine. Basparesh. 2022;11(4):16-30.
33.    A Review on Poly(lactic acid) Fibre Fabrics Finishing Processes: Plasma Treatments, UV/Ozone Irradiation, Superhydrophobic surface Manufacturing, Enzymatic Treatment. Journal of Textile Science and Technology. 2017;6(2):19-26.
34.    Fattahi FS, Mousavi Shoushtari SA. New Approach toward Ultraviolet/O3-Assisted Nanoetching of Ingeo™ Surface. Nanochemistry Research. 2022;7(2):62-7.
35.    Fattahi F-S. Poly (Lactic Acid) Nano-fibers as Novel Drug Delivery Systems: A Bird’s Eye View: LAP LAMBERT Academic Publishing; 2020.
36.    Fattahi F. Poly (lactic acid) nano-structures for cartilage regeneration and joint repair: Strategies and ideas. Recent Trends Nanosci Technol. 2020;1:1-19.
37.    Salimi K, Eghbali S, Jasemi A, Shokrani Foroushani R, Joneidi Yekta H, Latifi M, et al. An Artificial Soft Tissue Made of Nano-Alginate Polymer Using Bioxfab 3D Bioprinter for Treatment of Injuries. Nanochemistry Research. 2020;5(2):120-7.
38.    Rajaei A, Kazemian M, Khandan A. Investigation of mechanical stability of lithium disilicate ceramic reinforced with titanium nanoparticles. Nanomedicine Research Journal. 2022;7(4):350-9.
39.    Fattahi F-s, Khoddami A, Avinc O. Poly (lactic acid)(PLA) nanofibers for bone tissue engineering. Journal of Textiles and Polymers. 2019;7(2):47-64.
40.    Fattahi FS, Khoddami A, Avinc OO. Poly (Lactic Acid) Nano structure mats as potential wound dressings. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi.26(7):1193-203.
41.    Fattahi FS, Khoddami A, Avinc O. Sustainable, renewable, and biodegradable poly (lactic acid) fibers and their latest developments in the last decade. Sustainability in the Textile and Apparel Industries: Sourcing Synthetic and Novel Alternative Raw Materials. 2020:173-94.
42.    Munier S, Messai I, Delair T, Verrier B, Ataman-Onal Y. Cationic PLA nanoparticles for DNA delivery: comparison of three surface polycations for DNA binding, protection and transfection properties. Colloids and surfaces B, Biointerfaces. 2005;43(3-4):163-73.
43.    Jo A, Ringel‑Scaia VM, McDaniel DK, Thomas CA, Zhang R, Riffle JS, et al. Fabrication and characterization of PLGA nanoparticles encapsulating large CRISPR–Cas9 plasmid. Journal of Nanobiotechnology. 2020;18(16).
44.    Amin Amania b, Toraj Kabirib, Samira Shafieec and Aliasghar Hamidia. Preparation and Characterization of PLA-PEG-PLA/PEI/DNA Nanoparticles for Improvement of Transfection Efficiency and Controlled Release of DNA in Gene Delivery Systems. Iranian Journal of Pharmaceutical Research. 2019;18(1):125-41.
45.    Noémi S. Csaba, Alejandro Sánchez, Alonso MJ. Preparation of Poly(Lactic Acid) (PLA) and Poly(Ethylene Oxide) (PEO) Nanoparticles as Carriers for Gene Delivery. Cold Spring Harbor Protocols. 2012;2010(8).
46.    Zou W, Liu C, Chen Z, Zhang N. Preparation and Characterization of Cationic PLA-PEG Nanoparticles for Delivery of Plasmid DNA. Nanoscale Res Lett. 2009;4:982–92.
47.    Kim JH, Park JS, Yang HN, Woo DG, Jeon SY, HJ D. The use of biodegradable PLGA nanoparticles to mediate SOX9 gene delivery in human mesenchymal stem cells (hMSCs) and induce chondrogenesis. Biomaterials. 2011;32(1):268–78.
48.    Li XW, Lee DKL, Chan ASC, Alpar HO. Sustained expression in mammalian cells with DNA complexed with chitosan nanoparticles. Biochimica et Biophysica Acta (BBA) - Gene Structure and Expression. 2003;1630(1):7-18.
49.    Digiacomo L, Renzi S, Quagliarini E, Pozzi D, Amenitsch H, Ferri G, et al. Investigating the mechanism of action of DNA-loaded PEGylated lipid nanoparticles. Nanomedicine: Nanotechnology, Biology and Medicine. 2023;53:102697.
50.    Danaeifar M, Negahdari B, Eslam HM, Zare H, Ghanaat M, Koushali SS, Malekshahi ZV. Polymeric nanoparticles for DNA vaccine-based cancer immunotherapy: a review. Biotechnology Letters. 2023;45(9):1053-72.
51.    Arash A, Zhikal Omar K, Shukur Wasman S, Asadollah A, Amin A. FeCo-Chitosan / DNA nanoparticles for gene transfer to MCF-7 breast cancer cells: preparation and characterization. Basic & Clinical Cancer Research. 2022;13(4).
52.    Amani A, Kabiri T, Shafiee S, Hamidi A. Preparation and Characterization of PLA-PEG-PLA/PEI/DNA Nanoparticles for Improvement of Transfection Efficiency and Controlled Release of DNA in Gene Delivery Systems. Iranian Journal of Pharmaceutical Research. 2019;18(1):125-41.
53.    Hefny MM, Elmezayyen AS, Tawfik AM. Anomalous kinetic study of atenolol release from ATN@DNA a core-shell like structure. Scientific Reports. 2023;13(1):3120.
54.    Shankar R, Nayak S, Singh S, Sen A, Kumar N, Bhushan R, et al. Simultaneous Sustained Drug Delivery, Tracking, and On-Demand Photoactivation of DNA–Hydrogel Formulated from a Biomass-Derived DNA Nanoparticle. ACS Applied Bio Materials. 2023;6(4):1556-65.
55.    Kuşcu L, Sezer AD. Future prospects for gene delivery systems. Expert Opinion on Drug Delivery. 2017;14(10):1205-15.
56.    Faneca H. Non-Viral Gene Delivery Systems. Pharmaceutics. 2021;13(4):446.